Monadic Abstract Interpreters

Mlya Sergey Dominique Devriese Matthew Might
Jan Midtgaard David Darais Dave Clarke Frank Piessens

PLDI 2013

"My life goal: Replace myself with a $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ macro."

Matthew Might Abstract Interpreters for Free, SAS 2010

M. Might, "Abstract Interpreters for Free"

small-step concrete semantics (interpreter)

$$
=>
$$

small-step abstract semantics (analysis)

This Work

This Work

Replace myself with a library of reusable functions.

This Work

small-step concrete semantics implementation

and

small-step abstract semantics implementation

This Work

small-step concrete semantics implementation

and

small-step abstract semantics implementation
(for the price of one $+\varepsilon$)

How do you design

an abstract interpreter?

How do you

 implement
an abstract interpreter?

Our perspective

Separate

the interpreter machinery
from a program analysis logic

Separate

the interpreter machinery from a program analysis logic

and also

Make different aspects of a program analysis reusable between languages and semantics

Monads for

the separation of concerns

Starting point:

Concrete vs. Abstract

Concrete CPS semantics

$$
\begin{aligned}
\left(\llbracket\left(f æ_{1} \ldots æ_{n}\right) \rrbracket, \rho, \sigma\right) & \Rightarrow\left(c a l l, \rho^{\prime \prime}, \sigma^{\prime}\right), \text { where } \\
\left(\llbracket\left(\lambda\left(v_{1} \ldots v_{n}\right) c a l l\right) \rrbracket, \rho^{\prime}\right) & =\mathcal{A}(f, \rho, \sigma) \\
\rho^{\prime \prime} & =\rho^{\prime}\left[v_{i} \mapsto a_{i}\right] \\
\sigma^{\prime} & =\sigma\left[a_{i} \mapsto \mathcal{A}\left(æ_{i}, \rho, \sigma\right)\right] \\
a_{i} & =\operatorname{alloc}\left(v_{i}, \sigma\right)
\end{aligned}
$$

where

$$
\begin{aligned}
\mathcal{A}(v, \rho, \sigma) & =\sigma(\rho(v)) \\
\mathcal{A}(\operatorname{lam}, \rho, \sigma) & =(\text { lam }, \rho)
\end{aligned}
$$

Abstract CPS semantics

$$
\begin{aligned}
\left(\llbracket\left(f æ_{1} \ldots æ_{n}\right) \rrbracket, \hat{\rho}, \hat{\sigma}\right) & \leadsto\left(\operatorname{call}, \hat{\rho}^{\prime \prime}, \hat{\sigma}^{\prime}\right), \text { where } \\
\left(\llbracket\left(\lambda\left(v_{1} \ldots v_{n}\right) \operatorname{call}\right) \rrbracket, \hat{\rho}^{\prime}\right) & \in \hat{\mathcal{A}}(f, \hat{\rho}, \hat{\sigma}) \\
\hat{\rho}^{\prime \prime} & =\hat{\rho}^{\prime}\left[v_{i} \mapsto \hat{a}_{i}\right] \\
\hat{\sigma}^{\prime} & =\hat{\sigma} \sqcup\left[\hat{a}_{i} \mapsto \hat{\mathcal{A}}\left(æ_{i}, \hat{\rho}, \hat{\sigma}\right)\right] \\
\hat{a}_{i} & =\widehat{\operatorname{alloc}}\left(v_{i}, \hat{\sigma}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
\hat{\mathcal{A}}(v, \hat{\rho}, \hat{\sigma}) & =\hat{\sigma}(\hat{\rho}(v)) \\
\hat{\mathcal{A}}(\operatorname{lam}, \hat{\rho}, \hat{\sigma}) & =\{(\operatorname{lam}, \hat{\rho})\}
\end{aligned}
$$

Similar, but not the same!

$\left(\llbracket\left(f æ_{1} \ldots æ_{n}\right) \rrbracket, \rho, \sigma\right) \Rightarrow\left(\right.$ call, $\left.\rho^{\prime \prime}, \sigma^{\prime}\right)$, where
$\left(\llbracket\left(\lambda\left(v_{1} \ldots v_{n}\right)\right.\right.$ call $\left.) \rrbracket, \rho^{\prime}\right)=\mathcal{A}(f, \rho, \sigma)$

$$
\begin{aligned}
\rho^{\prime \prime} & =\rho^{\prime}\left[v_{i} \mapsto a_{i}\right] \\
\sigma^{\prime} & =\sigma\left[a_{i} \mapsto \mathcal{A}\left(x_{i}, \rho, \sigma\right)\right] \\
a_{i} & =\operatorname{alloc}\left(v_{i}, \sigma\right)
\end{aligned}
$$

$$
\begin{aligned}
\left(\llbracket\left(f æ_{1} \ldots æ_{n}\right) \rrbracket, \hat{\rho}, \hat{\sigma}\right) & \leadsto\left(\text { call }, \hat{\rho}^{\prime \prime}, \hat{\sigma}^{\prime}\right), \text { where } \\
\left(\llbracket\left(\lambda\left(v_{1} \ldots v_{n}\right) \text { call }\right) \rrbracket, \hat{\rho}^{\prime}\right) & \in \hat{\mathcal{A}}(f, \hat{\rho}, \hat{\sigma}) \\
\hat{\rho}^{\prime \prime} & =\hat{\rho}^{\prime}\left[v_{i} \mapsto \hat{a}_{i}\right] \\
\hat{\sigma}^{\prime} & =\hat{\sigma} \sqcup\left[\hat{a}_{i} \mapsto \hat{\mathcal{A}}\left(æ_{i}, \hat{\rho}, \hat{\sigma}\right)\right] \\
\hat{a}_{i} & =\widehat{\operatorname{alloc}\left(v_{i}, \hat{\sigma}\right)}
\end{aligned}
$$

How can we unify their implementations?

Commonalities

Differences

Commonalities

Commonalities

Shape of the computation

Concrete

$$
\overbrace{\left(\llbracket\left(f \mathfrak{x}_{1} \ldots \mathfrak{x}_{n}\right) \rrbracket, \rho, \sigma\right)}^{\varsigma} \Rightarrow\left(\text { call }, \rho^{\prime \prime}, \sigma^{\prime}\right)
$$

Abstract

Differences

Differences

Treatment of semantic values

Concrete

$$
\begin{aligned}
\left(\llbracket\left(f æ_{1} \ldots æ_{n}\right) \rrbracket, \rho, \sigma\right) & \Rightarrow\left(c a l l, \rho^{\prime \prime}, \sigma^{\prime}\right), \text { where } \\
\left(\llbracket\left(\lambda\left(v_{1} \ldots v_{n}\right) c a l l\right) \rrbracket, \rho^{\prime}\right) & =\mathcal{A}(f, \rho, \sigma) \\
\rho^{\prime \prime} & =\rho^{\prime}\left[v_{i} \mapsto a_{i}\right] \\
\sigma^{\prime} & =\sigma\left[a_{i} \mapsto \mathcal{A}\left(æ_{i}, \rho, \sigma\right)\right] \\
a_{i} & =\operatorname{alloc}\left(v_{i}, \sigma\right)
\end{aligned}
$$

Abstract

$$
\begin{aligned}
\left(\llbracket\left(f æ_{1} \ldots æ_{n}\right) \rrbracket, \hat{\rho}, \hat{\sigma}\right) & \leadsto\left(\text { call }, \hat{\rho}^{\prime \prime}, \hat{\sigma}^{\prime}\right), \text { where } \\
\left(\llbracket\left(\lambda\left(v_{1} \ldots v_{n}\right) \text { call }\right) \rrbracket, \hat{\rho}^{\prime}\right) & \in \hat{\mathcal{A}}(f, \hat{\rho}, \hat{\sigma}) \\
\hat{\rho}^{\prime \prime} & =\hat{\rho}^{\prime}\left[v_{i} \mapsto \hat{a}_{i}\right] \\
\hat{\sigma}^{\prime} & =\hat{\sigma} \sqcup\left[\hat{a}_{i} \mapsto \hat{\mathcal{A}}\left(æ_{i}, \hat{\rho}, \hat{\sigma}\right)\right] \\
\hat{a}_{i} & =\widehat{\operatorname{alloc}}\left(v_{i}, \hat{\sigma}\right)
\end{aligned}
$$

Differences

Treatment of semantic values

Concrete

$$
\begin{aligned}
\left(\llbracket\left(f æ_{1} \ldots æ_{n}\right) \rrbracket, \rho, \sigma\right) & \Rightarrow\left(\text { call }, \rho^{\prime \prime}, \sigma^{\prime}\right), \text { where } \\
\left(\llbracket\left(\lambda\left(v_{1} \ldots v_{n}\right) c a l l\right) \rrbracket, \rho^{\prime}\right) & \fallingdotseq \mathcal{A}(f, \rho, \sigma) \\
\rho^{\prime \prime} & =\rho^{\prime}\left[v_{i} \mapsto a_{i}\right] \\
\sigma^{\prime} & \left.=\sigma\left[a_{i} \mapsto \text { A) } æ_{i}, \rho, \sigma\right)\right] \\
a_{i} & =\text { alloc }\left(v_{i}, \sigma\right)
\end{aligned}
$$

Abstract

$$
\begin{aligned}
\left(\llbracket\left(f æ_{1} \ldots æ_{n}\right) \rrbracket, \hat{\rho}, \hat{\sigma}\right) & \leadsto\left(\text { call }, \hat{\rho}^{\prime \prime}, \hat{\sigma}^{\prime}\right), \text { where } \\
\left(\llbracket\left(\lambda\left(v_{1} \ldots v_{n}\right) \text { call }\right) \rrbracket, \hat{\rho}^{\prime}\right) & \in \hat{\mathcal{A}}(f, \hat{\rho}, \hat{\sigma}) \\
\hat{\rho}^{\prime \prime} & =\hat{\rho}^{\prime}\left[v_{i} \mapsto \hat{a}_{i}\right] \\
\hat{\sigma}^{\prime} & \left.=\hat{\sigma}\left(\hat{a}_{i} \mapsto \hat{\mathcal{A}} æ_{i}, \hat{\rho}, \hat{\sigma}\right)\right] \\
\hat{a}_{i} & =\text { alloc }\left(v_{i}, \hat{\sigma}\right)
\end{aligned}
$$

Abstract Interpreter

Abstract Interpreter

- Forks

Abstract Interpreter

- Forks
- Advances timestamps

Abstract Interpreter

- Forks
- Advances timestamps
- Performs Abstract GC

Abstract Interpreter

- Forks
- Advances timestamps
- Performs Abstract GC
- Keeps track of contexts

Abstract Interpreter

- Forks
- Advances timestamps
- Performs Abstract GC
- Keeps track of contexts
- Makes counting

Abstract Interpreter

- Forks
- Advances timestamps
- Performs Abstract GC
- Keeps track of contexts
- Makes counting

Computational Effects

Abstract Interpreter

nondeterminism
 - Forks

tracing

- Advances timestamps

state modification

- Performs Abstract GC
tracing
- Keeps track of contexts
state modification
- Makes counting

Computational Effects

Abstract Interpretation as a computational effect

Eugenio Moggi

Notions of computation and monads, Inf. Comput., 1991
... we identify the type A with the object of values (of type A) and obtain the object of computations (of type A) by applying an unary type-constructor T to A.
We call T a notion of computation, since it abstracts away from the type of values computations may produce.

Eugenio Moggi

Notions of computation and monads, Inf. Comput., 1991
... we identify the type A with the object of values (of type A) and obtain the object of computations (of type A) by applying an unary type-constructor T to A.
We call T a notion of computation, since it abstracts away from the type of values computations may produce.

Philip Wadler

Comprehending Monads, LFP, 1991

It is relatively straightforward to adopt Moggi's technique of structuring denotational specifications into a technique for structuring functional programs. This paper presents a simplified version of Moggi's ideas, framed in a way better suited to functional programmers than semanticists; in particular, no knowledge of category theory is assumed.

Philip Wadler

Comprehending Monads, LFP, 1991

It is relatively straightforward to adopt Moggi's technique of structuring denotational specifications into a technique for structuring functional programs. This paper presents a simplified version of Moggi's ideas, framed in a way better suited to functional programmers than semanticists; in particular, no knowledge of category theory is assumed.

Let's program some semantics in Haskell

Implementing and Refactoring time-stamped k-CFA for CPS

$v \in \operatorname{Var}$ is a set of identifiers

$$
\begin{aligned}
& \operatorname{lam} \in \operatorname{Lam}::=\left(\lambda\left(v_{1} \ldots v_{n}\right) \text { call }\right) \\
& f, \mathfrak{x} \in \text { AExp }=\text { Var }+\operatorname{Lam} \\
& \text { call } \in \text { Call }::=\left(f \mathfrak{x}_{1} \ldots \mathfrak{x}_{n}\right)+\text { Exit }
\end{aligned}
$$

$$
\hat{\varsigma} \in \hat{\Sigma}=\text { Call } \times \widehat{\text { Env }} \times \widehat{\text { Store }} \times \widehat{\text { Time }}
$$

$$
\widehat{\rho} \in \widehat{E n v}=\operatorname{Var} \rightharpoonup \widehat{A d d r}
$$

$$
\hat{\sigma} \in \widehat{\text { Store }}=\widehat{\text { Addr }} \rightarrow \mathcal{P}(\hat{D})
$$

$$
\hat{d} \in \hat{D}=\widehat{C l o}
$$

$$
\widehat{c l o} \in \widehat{C l o}=\mathrm{Lam} \times \widehat{E n v}
$$

$$
\hat{a} \in \widehat{A d d r}=\operatorname{Var} \times \widehat{\text { Time }}
$$

$$
\hat{t} \in \widehat{\text { Time }}=\text { Call }{ }^{\leq k}
$$

$$
\begin{aligned}
& \text { type Var }=\text { String } \\
& \text { data Lambda }=[\text { Var }] \Rightarrow \text { CExp deriving }(E q, \text { Ord }) \\
& \text { data } A E x p ~=\text { Ref Var } \\
& \mid \text { Lam Lambda deriving }(E q, \text { Ord }) \\
& \text { data } \text { CExp }=\text { Call AExp }[\text { AExp }] \\
& \mid \text { Exit } \quad \text { deriving }(E q, \text { Ord }) \\
& \hat{\varsigma} \in \hat{\Sigma}=\text { Call } \times \widehat{\text { Env }} \times \widehat{\text { Store }} \times \widehat{\text { Time }} \\
& \hat{\rho} \in \widehat{\text { Env }}=\operatorname{Var} \rightharpoonup \widehat{\text { Addr }} \\
& \hat{\sigma} \in \widehat{\text { Store }}=\widehat{\text { Addr }} \rightarrow \mathcal{P}(\hat{D}) \\
& \hat{d} \in \hat{D}=\widehat{\text { Clo }} \\
& \widehat{\text { clo }} \in \widehat{\text { Clo }}=\text { Lam } \times \widehat{\text { Env }} \\
& \hat{a} \in \widehat{\text { Addr }}=\text { Var } \times \widehat{\text { Time }} \\
& \hat{t} \in \widehat{\text { Time }}=\text { Call } \leq k
\end{aligned}
$$

```
type Var = String
data Lambda = [Var] => CExp deriving (Eq,Ord)
data AExp = Ref Var
    Lam Lambda deriving (Eq,Ord)
data CExp = Call AExp [AExp]
Exit deriving (Eq,Ord)
type \Sigma=(CExp,Env,Store,Time)
type k}\rightharpoonupv=Mapk
type Env = Var }\rightharpoonupAdd
type Store =Addr \rightharpoonup\mathcal{P Val}
data Val = Clo (Lambda,Env)
                                deriving (Eq, Ord)
type Addr = (Var, Time)
type Time = [CExp]
```

$(\rightsquigarrow) \in \Sigma \rightarrow \mathcal{P}(\Sigma)$
$\left(\llbracket\left(f æ_{1} \ldots æ_{n}\right) \rrbracket, \hat{\rho}, \hat{\sigma}, \hat{t}\right) \rightsquigarrow\left(\right.$ call, $\left.\hat{\rho}^{\prime \prime}, \hat{\sigma}^{\prime}, \hat{t}^{\prime}\right)$, if
$\underbrace{\left(\llbracket\left(\lambda\left(v_{1} \ldots v_{n}\right) c a l l\right) \rrbracket, \hat{\rho}^{\prime}\right)}_{\overrightarrow{c l o}} \in \hat{\mathcal{A}}(f, \hat{\rho}, \hat{\sigma})$

$$
\begin{aligned}
\hat{t}^{\prime} & =\widehat{\operatorname{tick}}(\widehat{c l o}, \hat{\varsigma}) \\
\hat{a}_{i} & =\widehat{\operatorname{alloc}}\left(v_{i}, \hat{t}^{\prime}\right) \\
\hat{d}_{i} & \in \hat{\mathcal{A}}\left(æ_{i}, \hat{\rho}, \hat{\sigma}\right) \\
\hat{\rho}^{\prime \prime} & =\hat{\rho}^{\prime}\left[v_{i} \mapsto \hat{a}_{i}\right] \\
\hat{\sigma}^{\prime} & =\hat{\sigma} \sqcup\left[\hat{a}_{i} \mapsto\left\{\hat{d}_{i}\right\}\right]
\end{aligned}
$$

next $:: \Sigma \rightarrow[\Sigma]$
$\left(\llbracket\left(f æ_{1} \ldots æ_{n}\right) \rrbracket, \hat{\rho}, \hat{\sigma}, \hat{t}\right) \rightsquigarrow\left(\right.$ call $\left., \hat{\rho}^{\prime \prime}, \hat{\sigma}^{\prime}, \hat{t}^{\prime}\right)$, if
$\underbrace{\left(\llbracket\left(\lambda\left(v_{1} \ldots v_{n}\right) c a l l\right) \rrbracket, \hat{\rho}^{\prime}\right)}_{\widehat{c l o}} \in \hat{\mathcal{A}}(f, \hat{\rho}, \hat{\sigma})$

$$
\begin{aligned}
\hat{t}^{\prime} & =\widehat{\operatorname{tick}}(\widehat{c l o}, \hat{\varsigma}) \\
\hat{a}_{i} & =\widehat{\operatorname{alloc}}\left(v_{i}, \hat{t}^{\prime}\right) \\
\hat{d}_{i} & \in \hat{\mathcal{A}}\left(æ_{i}, \hat{\rho}, \hat{\sigma}\right) \\
\hat{\rho}^{\prime \prime} & =\hat{\rho}^{\prime}\left[v_{i} \mapsto \hat{a}_{i}\right] \\
\hat{\sigma}^{\prime} & =\hat{\sigma} \sqcup\left[\hat{a}_{i} \mapsto\left\{\hat{d}_{i}\right\}\right]
\end{aligned}
$$

```
next :: \Sigma->[\Sigma]
```

next $\varsigma @($ Call f aes $, \rho, \sigma, t)=\left[\left(\right.\right.$ call, $\left.\rho^{\prime \prime}, \sigma^{\prime}, t^{\prime}\right) \mid$ $\operatorname{proc} @\left(C l o\left(v s \Rightarrow c a l l, \rho^{\prime}\right)\right) \leftarrow$ Set.toList $(\arg (f, \rho, \sigma))$, let $t^{\prime}=\operatorname{tick}(p r o c, \varsigma)$

$$
a s=\left[\operatorname{alloc}\left(v, t^{\prime}, \operatorname{proc}, \varsigma\right) \mid v \leftarrow v s\right]
$$

$$
d s=[\arg (æ, \rho, \sigma) \mid æ \leftarrow a e s]
$$

$$
\rho^{\prime \prime}=\rho^{\prime} / /[v \Longrightarrow a|v \leftarrow v s| a \leftarrow a s]
$$

$$
\left.\sigma^{\prime}=\sigma \sqcup[a \Longrightarrow d|a \leftarrow a s| d \leftarrow d s]\right]
$$

next $\varsigma=[\varsigma]$

Refactoring Plan

- Capture non-determinism in the monad
- Pull the store into the monad
- Pull the time into the monad
- Abstract over k-CFA addresses

Refactoring Plan

\rightarrow - Capture non-determinism in the monad

- Pull the store into the monad
- Pull the time into the monad
- Abstract over k-CFA addresses

```
next :: \Sigma }->[\Sigma
```

next $\varsigma @($ Call f aes $, \rho, \sigma, t)=\left[\left(\right.\right.$ call $\left., \rho^{\prime \prime}, \sigma^{\prime}, t^{\prime}\right) \mid$
proc@ $\left(C l o\left(v s \Rightarrow\right.\right.$ call,$\left.\left.\rho^{\prime}\right)\right) \leftarrow$ Set.toList $(\arg (f, \rho, \sigma))$,
let $t^{\prime}=\operatorname{tick}($ proc,$\varsigma)$
$a s=\left[\operatorname{alloc}\left(v, t^{\prime}, \operatorname{proc}, \varsigma\right) \mid v \leftarrow v s\right]$
$d s=[\arg (æ, \rho, \sigma) \mid æ \leftarrow a e s]$
$\rho^{\prime \prime}=\rho^{\prime} / /[v \Longrightarrow a|v \leftarrow v s| a \leftarrow a s]$
$\left.\sigma^{\prime}=\sigma \sqcup[a \Longrightarrow d|a \leftarrow a s| d \leftarrow d s]\right]$
next $\varsigma=[\varsigma]$
mnext $:: \Sigma \rightarrow[\Sigma]$
next $\varsigma @($ Call f aes, $\rho, \sigma, t)=\left[\left(\right.\right.$ call $\left., \rho^{\prime \prime}, \sigma^{\prime}, t^{\prime}\right) \mid$ proc@ $\left(C l o\left(v s \Rightarrow\right.\right.$ call,$\left.\left.\rho^{\prime}\right)\right) \leftarrow$ Set.toList $(\arg (f, \rho, \sigma))$, let $t^{\prime}=$ tick $(p r o c, \varsigma)$

$$
\begin{aligned}
a s & =\left[\operatorname{alloc}\left(v, t^{\prime}, \text { proc }, \varsigma\right) \mid v \leftarrow v s\right] \\
d s & =[\arg (æ, \rho, \sigma) \mid æ \leftarrow a e s] \\
\rho^{\prime \prime} & =\rho^{\prime} / /[v \Longrightarrow a|v \leftarrow v s| a \leftarrow a s] \\
\sigma^{\prime} & =\sigma \sqcup[a \Longrightarrow d|a \leftarrow a s| d \leftarrow d s]]
\end{aligned}
$$

next $\varsigma=[\varsigma]$
mnext $:: \Sigma \rightarrow[\Sigma]$
mnext $\varsigma @($ Call f aes, $\rho, \sigma, t)=\mathbf{d o}$ proc@ $\left(C l o\left(v s \Rightarrow\right.\right.$ call,$\left.\left.\rho^{\prime}\right)\right) \leftarrow$ Set.toList $(\arg (f, \rho, \sigma))$, let $t^{\prime}=\operatorname{tick}(p r o c, \varsigma)$

$$
a s=\left[\operatorname{alloc}\left(v, t^{\prime}, \operatorname{proc}, \varsigma\right) \mid v \leftarrow v s\right]
$$

$$
d s=[\arg (æ, \rho, \sigma) \mid æ \leftarrow a e s]
$$

$$
\rho^{\prime \prime}=\rho^{\prime} / /[v \Longrightarrow a|v \leftarrow v s| a \leftarrow a s]
$$

$$
\sigma^{\prime}=\sigma \sqcup[a \Longrightarrow d|a \leftarrow a s| d \leftarrow d s]
$$

return $\left(\right.$ call $\left., \rho^{\prime \prime}, \sigma^{\prime}, t^{\prime}\right)$
next $\varsigma=[\varsigma]$
mnext $:: \Sigma \rightarrow[\Sigma]$
mnext $\varsigma @($ Call f aes, $\rho, \sigma, t)=\mathbf{d o}$ proc@ $\left(C l o\left(v s \Rightarrow\right.\right.$ call,$\left.\left.\rho^{\prime}\right)\right) \leftarrow$ Set.toList $(\arg (f, \rho, \sigma))$, let $t^{\prime}=$ tick $($ proc,$\varsigma)$

$$
a s=\left[\operatorname{alloc}\left(v, t^{\prime}, \operatorname{proc}, \varsigma\right) \mid v \leftarrow v s\right]
$$

$$
d s=[\arg (æ, \rho, \sigma) \mid æ \leftarrow a e s]
$$

$$
\rho^{\prime \prime}=\rho^{\prime} / /[v \Longrightarrow a|v \leftarrow v s| a \leftarrow a s]
$$

$$
\sigma^{\prime}=\sigma \sqcup[a \Longrightarrow d|a \leftarrow a s| d \leftarrow d s]
$$

return $\left(\right.$ call $\left., \rho^{\prime \prime}, \sigma^{\prime}, t^{\prime}\right)$
mnext $\varsigma=$ return ς

Semantic functions

```
fun ::(Env, Store) }->\mathrm{ AExp }->[\mathrm{ Val]
arg ::(Env, Store) -> AExp ->[Val]
tick :: Val }->\mathrm{ State }->\mathrm{ [Time]
alloc :: (Time, Val, State) }->\mathrm{ Var }->[Addr
```


Semantic functions

$\left.\begin{array}{l}\text { fun }::(\text { Env, Store }) \rightarrow A E x p \rightarrow[\text { Val }] \\ \text { arg }::(\text { Env, Store }) \rightarrow A E x p \rightarrow[\text { Val }]\end{array}\right\} \quad \hat{\mathcal{A}}(f, \hat{\rho}, \hat{\sigma})$
tick $::$ Val \rightarrow State $\rightarrow[$ Time $]$
alloc $::($ Time, Val, State $) \rightarrow$ Var $\rightarrow[A d d r]$
mnext $:: \Sigma \rightarrow[\Sigma]$
mnext $\varsigma @($ Call f aes, $\rho, \sigma, t)=\mathbf{d o}$
$\operatorname{proc} @\left(C l o\left(v s \Rightarrow c a l l, \rho^{\prime}\right)\right) \leftarrow \operatorname{Set} . t o L i s t(\arg (f, \rho, \sigma))$
let $t^{\prime}=\operatorname{tick}($ proc,$\varsigma)$
$a s=\left[\operatorname{alloc}\left(v, t^{\prime}, \operatorname{proc}, \varsigma\right) \mid v \leftarrow v s\right]$
$d s=[\arg (æ, \rho, \sigma) \mid æ \leftarrow a e s]$
$\rho^{\prime \prime}=\rho^{\prime} / /[v \Longrightarrow a|v \leftarrow v s| a \leftarrow a s]$
$\sigma^{\prime}=\sigma \sqcup[a \Longrightarrow d|a \leftarrow a s| d \leftarrow d s]$
return $\left(\right.$ call $\left., \rho^{\prime \prime}, \sigma^{\prime}, t^{\prime}\right)$
mnext $\varsigma=$ return ς
mnext $:: \Sigma \rightarrow[\Sigma]$
mnext $\varsigma @($ Call faes, $\rho, \sigma, t)=\mathbf{d o}$
$\operatorname{proc} @\left(C l o\left(v s \Rightarrow\right.\right.$ call,$\left.\left.\rho^{\prime}\right)\right) \leftarrow$ fun $(\rho, \sigma) f$
$t^{\prime} \leftarrow$ tick proc ς
let $a s=\operatorname{mapM}\left(\operatorname{alloc}\left(t^{\prime}, \operatorname{proc}, \varsigma\right)\right) v s$ $d s=\operatorname{map} M(\arg (\rho, \sigma))$ aes $\rho^{\prime \prime}=\rho^{\prime} / /[v \Longrightarrow a|v \leftarrow v s| a \leftarrow a s]$

$$
\sigma^{\prime}=\sigma \sqcup[a \Longrightarrow d|a \leftarrow a s| d \leftarrow d s]
$$

return $\left(\right.$ call $\left., \rho^{\prime \prime}, \sigma^{\prime}, t^{\prime}\right)$
mnext $\varsigma=$ return ς

Refactoring Plan

\rightarrow - Capture non-determinism in the monad

- Pull the store into the monad
- Pull the time into the monad
- Abstract over k-CFA addresses

Refactoring Plan

- Capture non-determinism in the monad
- Pull the store into the monad
- Pull the time into the monad
- Abstract over k-CFA addresses

Semantic functions

```
fun ::(Env, Store) }->\mathrm{ AExp }->[\mathrm{ Val]
arg ::(Env, Store) -> AExp ->[Val]
tick :: Val }->\mathrm{ State }->\mathrm{ [Time]
alloc :: (Time, Val, State) }->\mathrm{ Var }->[Addr
```


Semantic functions

Semantic functions

class Monad $m \Rightarrow$ CPSInterface m where
fun $::$ Env \rightarrow AExp $\rightarrow m$ Val
arg $:: E n v \rightarrow A E x p \rightarrow m$ Val
$(\mapsto):: A d d r \rightarrow$ Val $\rightarrow m()$
alloc :: Time \rightarrow Var \rightarrow m Addr
tick $:: V a l \rightarrow P \Sigma \rightarrow m$ Time

Semantic functions

class Monad $m \Rightarrow$ CPSInterface m where
fun $::$ Env \rightarrow AExp $\rightarrow m$ Val
$\arg :: \operatorname{Env} \rightarrow$ AExp $\rightarrow m$ Val
$(\mapsto):: A d d r \rightarrow$ Val $\rightarrow m()$
alloc :: Time \rightarrow Var \rightarrow m Addr
tick :: Val $\rightarrow P \Sigma \rightarrow m$ Time

Semantic functions

class Monad $m \Rightarrow$ CPSInterface m where
fun $::$ Env \rightarrow AExp $\rightarrow m$ Val
$\arg :: \operatorname{Env} \rightarrow$ AExp $\rightarrow m$ Val
$(\mapsto):: A d d r \rightarrow$ Val $\rightarrow m()$
alloc $::$ Time \rightarrow Var \rightarrow m Addr
tick $::$ Val $\rightarrow P \Sigma \rightarrow m$ Time
(CExp, Env, Time) - "partial state"

Semantic Interface

class Monad $m \Rightarrow$ CPSInterface m where

$$
\text { fun }:: E n v \rightarrow A E x p \rightarrow m \text { Val }
$$

$$
\arg :: E n v \rightarrow A E x p \rightarrow m \text { Val }
$$

$$
(\mapsto):: A d d r \rightarrow \text { Val } \rightarrow m()
$$

alloc : : Time \rightarrow Var $\rightarrow m$ Addr
tick ::Val $\rightarrow P \Sigma \rightarrow m$ Time
(CExp, Env, Time) - "partial state"
mnext $:: \Sigma \rightarrow[\Sigma]$
mnext $\varsigma @($ Call faes, $\rho, \sigma, t)=\mathbf{d o}$
proc@ $\left(C l o\left(v s \Rightarrow\right.\right.$ call, $\left.\left.\rho^{\prime}\right)\right) \leftarrow$ fun $(\rho, \sigma) f$
$t^{\prime} \leftarrow$ tick proc ς
let $a s=\operatorname{map} M\left(\operatorname{alloc}\left(t^{\prime}, \operatorname{proc}, \varsigma\right)\right) v s$
$d s=\operatorname{mapM}(\arg (\rho, \sigma))$ aes
$\rho^{\prime \prime}=\rho^{\prime} / /[v \Longrightarrow a|v \leftarrow v s| a \leftarrow a s]$
$\sigma^{\prime}=\sigma \sqcup[a \Longrightarrow d|a \leftarrow a s| d \leftarrow d s]$
return $\left(\right.$ call $\left., \rho^{\prime \prime}, \sigma^{\prime}, t^{\prime}\right)$
mnext $\varsigma=$ return ς
mnext $::($ CPSInterface $m) \Rightarrow P \Sigma \rightarrow m P \Sigma$
mnext $\varsigma @($ Call f aes, $\rho, \sigma, t)=\mathbf{d o}$
proc@ $\left(\right.$ Clo $\left(v s \Rightarrow\right.$ call, $\left.\left.\rho^{\prime}\right)\right) \leftarrow$ fun $(\rho, \sigma) f$
$t^{\prime} \leftarrow$ tick proc ς
let $a s=\operatorname{mapM}\left(\operatorname{alloc}\left(t^{\prime}\right.\right.$, proc,$\left.\left.\varsigma\right)\right)$ vs
$d s=\operatorname{map} M(\arg (\rho, \sigma))$ aes
$\rho^{\prime \prime}=\rho^{\prime} / /[v \Longrightarrow a|v \leftarrow v s| a \leftarrow a s]$
$\sigma^{\prime}=\sigma \sqcup[a \Longrightarrow d|a \leftarrow a s| d \leftarrow d s]$
return (call, $\left.\rho^{\prime \prime}, \sigma^{\prime}, t^{\prime}\right)$
mnext $\varsigma=$ return ς
mnext $::($ CPSInterface $m) \Rightarrow P \Sigma \rightarrow m P \Sigma$
mnext $\varsigma @($ Call f aes, $\rho, \sigma, t)=\mathbf{d o}$
proc@ $\left(\right.$ Clo $\left(v s \Rightarrow\right.$ call, $\left.\left.\rho^{\prime}\right)\right) \leftarrow$ fun $(\rho, \sigma) f$
$t^{\prime} \leftarrow$ tick proc ς
as $\leftarrow \operatorname{mapM}\left(\right.$ alloc $\left.t^{\prime}\right)$ vs
$d s \leftarrow \operatorname{mapM}(\arg \rho)$ aes
let $\rho^{\prime \prime}=\rho^{\prime} / /[v \Longrightarrow a|v \leftarrow v s| a \leftarrow a s]$
sequence $[a \mapsto d|a \leftarrow a s| d \leftarrow d s]$
return (call, $\rho^{\prime \prime}, \sigma^{\prime}, t^{\prime}$)
mnext $\varsigma=$ return ς

Refactoring Plan

- Capture non-determinism in the monad
- Pull the store into the monad
- Pull the time into the monad
- Abstract over k-CFA addresses

Refactoring Plan

- Capture non-determinism in the monad
- Pull the store into the monad
- Pull the time into the monad
- Abstract over k-CFA addresses

Semantic Interface

class Monad $m \Rightarrow$ CPSInterface m where

$$
\begin{aligned}
& \text { fun }:: \text { Env } \rightarrow \text { AExp } \rightarrow m \text { Val } \\
& \text { arg }:: \text { Env } \rightarrow \text { AExp } \rightarrow m \text { Val } \\
& (\mapsto):: \text { Addr } \rightarrow \text { Val } \rightarrow m() \\
& \text { alloc }:: \text { Time } \rightarrow \text { Var } \rightarrow m \text { Addr } \\
& \text { tick }:: \text { Val } \rightarrow P \Sigma \rightarrow m \text { Time }
\end{aligned}
$$

Semantic Interface

class Monad $m \Rightarrow$ CPSInterface m where

$$
\begin{aligned}
& \text { fun }:: \text { Env } \rightarrow \text { AExp } \rightarrow m \text { Val } \\
& \text { arg }:: \text { Env } \rightarrow \text { AExp } \rightarrow m \text { Val } \\
& (\mapsto):: \text { Addr } \rightarrow \text { Val } \rightarrow m() \\
& \text { alloc }:: \text { Var } \rightarrow m \text { Addr } \\
& \text { tick }:: \text { Val } \rightarrow P \Sigma \rightarrow m()
\end{aligned}
$$

Semantic Interface

class Monad $m \Rightarrow$ CPSInterface m where

$$
\begin{aligned}
& \text { fun }:: \text { Env } \rightarrow \text { AExp } \rightarrow m \text { Val } \\
& \text { arg }:: \text { Env } \rightarrow \text { AExp } \rightarrow m \text { Val } \\
& (\mapsto):: \text { Addr } \rightarrow \text { Val } \rightarrow m() \\
& \text { alloc }:: \text { Var } \rightarrow m \text { Addr } \\
& \text { tick }:: \text { Val } \rightarrow P \Sigma \rightarrow m()
\end{aligned}
$$

(CExp, Env) - "pure partial state"
mnext $::(C P S I n t e r f a c e ~ m) \Rightarrow P \Sigma \rightarrow m P \Sigma$
mnext $\varsigma @($ Call faes, $\rho, \sigma, t)=\mathbf{d o}$
proc@ $\left(C l o ~\left(v s \Rightarrow\right.\right.$ call,$\left.\left.\rho^{\prime}\right)\right) \leftarrow$ fun $(\rho, \sigma) f$
$t^{\prime} \leftarrow$ tick proc ps
as $\leftarrow \operatorname{mapM}\left(\right.$ alloc $\left.t^{\prime}\right)$ vs
$d s \leftarrow \operatorname{map} M(\arg \rho)$ aes
let $\rho^{\prime \prime}=\rho^{\prime} / /[v \Longrightarrow a|v \leftarrow v s| a \leftarrow a s]$
sequence $[a \mapsto d|a \leftarrow a s| d \leftarrow d s]$
return $\left(\right.$ call $\left., \rho^{\prime \prime}, \sigma^{\prime}, t^{\prime}\right)$
mnext $\varsigma=$ return ς
mnext $::(C P S I n t e r f a c e ~ m) \Rightarrow P \Sigma \rightarrow m P \Sigma$
mnext $\varsigma @($ Call faes, $\rho, \sigma, t)=\mathbf{d o}$
$\operatorname{proc} @\left(C l o\left(v s \Rightarrow\right.\right.$ call,$\left.\left.\rho^{\prime}\right)\right) \leftarrow$ fun $(\rho, \sigma) f$
tick proc ps
as \leftarrow mapM alloc vs
$d s \leftarrow \operatorname{mapM}(\arg \rho)$ aes
let $\rho^{\prime \prime}=\rho^{\prime} / /[v \Longrightarrow a|v \leftarrow v s| a \leftarrow a s]$
sequence $[a \mapsto d|a \leftarrow a s| d \leftarrow d s]$
return $\left(\right.$ call $\left., \rho^{\prime \prime}, \sigma^{\prime}, t^{\prime}\right)$
mnext $\varsigma=$ return ς

Refactoring Plan

- Capture non-determinism in the monad
- Pull the store into the monad
- Pull the time into the monad
- Abstract over k-CFA addresses

Refactoring Plan

- Capture non-determinism in the monad
- Pull the store into the monad
- Pull the time into the monad
- Abstract over k-CFA addresses
type $P \Sigma=(C E x p, E n v)$
type Env $=$ Var $\rightharpoonup A d d r$
data Val $=$ Clo (Lambda, Env)
type Store $=A d d r \rightharpoonup \mathcal{P}($ Val $)$
type $A d d r=($ Var, Time $)$
type Time $=[$ CExp $]$
type $P \Sigma=(C E x p, E n v)$ type Env $=$ Var $\rightharpoonup A d d r$
data Val $=$ Clo (Lambda, Env)
type Store $=A d d r \rightharpoonup \mathcal{P}($ Val $)$
type $P \Sigma a=(C E x p, E n v a)$
type Env $a=\operatorname{Var} \rightharpoonup a$
data Val $a=$ Clo (Lambda, Env a) type Store $a=a \rightharpoonup \mathcal{P}($ Val $a)$

Refactoring Plan

- Capture non-determinism in the monad
- Pull the store into the monad
- Pull the time into the monad
- Abstract over k-CFA addresses

Refactoring Plan

- Capture non-determinism in the monad
- Pull the store into the monad
- Pull the time into the monad
- Abstract over k-CFA addresses

Refactoring Plan

List - Capture non-determinism in the monad
State - Pull the store into the monad
Writer - Pull the time into the monad

- Abstract over k-CFA addresses

Monadic Small-Step Transition

```
mnext ::CPSInterface ma>P\Sigmaa->m(P\Sigmaa)
mnext ps@(Call f aes, })=\mathbf{do
    proc@(Clo (vs =>call',}\mp@subsup{\rho}{}{\prime}))\leftarrow\mathrm{ fun }\rho
    tick proc ps
    as \leftarrowmapM alloc vs
    ds\leftarrowmapM (arg \rho) aes
    let }\mp@subsup{\rho}{}{\prime\prime}=\mp@subsup{\rho}{}{\prime}//[v\Longrightarrowa|v\leftarrowvs|a\leftarrowas
    sequence [a\mapstod|a\leftarrowas|d\leftarrowds]
    return (call',}\mp@subsup{\rho}{}{\prime\prime}
mnext \varsigma = return \varsigma
```


Monadic Small-Step Transition

```
mnext ::CPSInterface m a m P\Sigmaa->m (P\Sigmaa)
mnext ps@(Call f aes, })=\mathbf{do
    proc@(Clo (vs =>call',}\mp@subsup{\rho}{}{\prime}))\leftarrow\mathrm{ fun }\rho
    tick proc ps
    as \leftarrowmapM alloc vs
    ds\leftarrowmapM (arg \rho) aes
    let }\mp@subsup{\rho}{}{\prime\prime}=\mp@subsup{\rho}{}{\prime}//[v\Longrightarrowa|v\leftarrowvs|a\leftarrowas
    sequence [a\mapstod|a\leftarrowas|d\leftarrowds]
    return (call',}\mp@subsup{\rho}{}{\prime\prime}
mnext \varsigma = return \varsigma
```


Semantic Interface

class Monad $m \Rightarrow$ CPSInterface $m a$ where

$$
\begin{aligned}
& \text { fun }:: \text { Env } a \rightarrow A \operatorname{Exp} \rightarrow m(\text { Val } a) \\
& \text { arg }:: \text { Env } a \rightarrow A \operatorname{Exp} \rightarrow m(\text { Val } a) \\
& (\mapsto):: a \rightarrow \text { Val } a \rightarrow m() \\
& \text { alloc }:: \text { Var } \rightarrow m a \\
& \text { tick }:: \text { Val } a \rightarrow P \Sigma a \rightarrow m()
\end{aligned}
$$

The Semantic Interface

class Monad $m \Rightarrow$ CPSInterface $m a$ where

$$
\begin{aligned}
\text { fun } & :: \text { Env } a \rightarrow A E x p \rightarrow m(\text { Val } a) \\
\text { arg } & :: \text { Env } a \rightarrow A E x p \rightarrow m(\text { Val } a)
\end{aligned}
$$

$$
(\mapsto):: a \rightarrow \text { Val } a \rightarrow m()
$$

$$
\text { alloc }:: \text { Var } \rightarrow m a
$$

$$
\text { tick }:: \text { Val } a \rightarrow P \Sigma a \rightarrow m()
$$

The Semantic Interface

class Monad $m \Rightarrow$ CPSInterface $m a$ where

$$
\begin{aligned}
\text { fun } & :: \text { Env } a \rightarrow A E x p \rightarrow m(\text { Val } a) \\
\text { arg } & :: \text { Env } a \rightarrow A E x p \rightarrow m(\text { Val } a)
\end{aligned}
$$

$$
(\mapsto):: a \rightarrow \text { Val } a \rightarrow m()
$$

$$
\text { alloc }:: \text { Var } \rightarrow m a
$$

$$
\text { tick }:: \text { Val } a \rightarrow P \Sigma a \rightarrow m()
$$

So what now?

Instantiating

Monadic Semantics

Instance I: Shallow Concrete Interpreter

Instance I:Shallow Concrete Interpreter

IO $+$

Semantic Interface Implementation

$$
+
$$

Standard driver loop machinery

Addresses

data $I O A d d r=I O A d d r$ \{lookup $::$ IORef (Val IOAddr) $\}$

Read/Write

```
readIOAddr :: IOAddr }->\mathrm{ IO (Val IOAddr)
readIOAddr = readIORef ○ lookup
writeIOAddr :: IOAddr }->\mathrm{ Val IOAddr }->\mathrm{ IO()
writeIOAddr = writeIORef ○lookup
```


Semantic Functions for Concrete Semantics

instance CPSInterface IO IOAddr where

$$
\begin{aligned}
\text { fun } \rho(\text { Lam } l) & =\text { return } \$ \text { Clo }(l, \rho) \\
\text { fun } \rho(\text { Ref } v) & =\text { readIOAddr }(\rho!v) \\
\arg \rho(\text { Lam } l) & =\text { return } \$ \text { Clo }(l, \rho) \\
\arg \rho(\text { Ref } v) & =\operatorname{readIOAddr}(\rho!v) \\
\operatorname{addr} \mapsto v & =\text { writeIOAddr addr } v \\
\text { alloc } v & =\text { liftM IOAddr } \$ \text { newIORef } \perp \\
\text { tick }-- & =\text { return }()
\end{aligned}
$$

Semantic Functions for Concrete Semantics

Monad

instance CPSInterface $\widehat{I O}$ IOAddr where

$$
\begin{aligned}
\text { fun } \rho(\text { Lam } l) & =\text { return } \$ \operatorname{Clo}(l, \rho) \\
\text { fun } \rho(\text { Ref } v) & =\text { readIOAddr }(\rho!v) \\
\arg \rho(\text { Lam } l) & =\text { return } \$ \operatorname{Clo}(l, \rho) \\
\arg \rho(\text { Ref } v) & =\text { readIOAddr }(\rho!v) \\
\operatorname{addr} \mapsto v \quad & =\text { writeIOAddr addr } v \\
\text { alloc } v & =\text { liftM IOAddr } \$ \text { newIORef } \perp \\
\text { tick }--\quad & \text { return }()
\end{aligned}
$$

Semantic Functions for Concrete Semantics

Driver Loop

```
interpret :: CExp ->IO(P\SigmaIOAddr)
interpret e = go (e,Map.empty)
    where go :: (P\SigmaIOAddr) ->IO(P\SigmaIOAddr )
    go s=do s}\mp@subsup{s}{}{\prime}\leftarrowmnext 
        case s}\mp@subsup{s}{}{\prime}\mathrm{ of x@(Exit,_) }->\mathrm{ return x
        y }->\mathrm{ go y
```


Driver Loop

```
interpret :: CExp ->IO (P\SigmaIOAddr)
interpret e = go (e,Map.empty) so
    where go :: (P\SigmaIOAddr) ->IO (P\SigmaIOAddr)
    go s=do s}\mp@subsup{s}{}{\prime}\leftarrowmnext 
        case s}\mp@subsup{s}{}{\prime}\mathrm{ of }x@(\mathrm{ Exit,_) }->\mathrm{ return x
        y
        go y
```


Driver Loop

```
interpret :: CExp ->IO(P\SigmaIOAddr)
interpret e = go (e, Map.empty)
    where go :: (P\SigmaIOAddr) ->IO (P\SigmaIOAddr )
    go s=do s}\mp@subsup{s}{}{\prime}\leftarrowmnext 
        case s}\mp@subsup{s}{}{\prime}\mathrm{ of x@(Exit,_) }->\mathrm{ return x
        y }->\mathrm{ go y
```


Driver Loop

```
interpret :: CExp ->IO (P\SigmaIOAddr)
interpret e = go (e,Map.empty)
    where go :: (P\SigmaIOAddr) ->IO (P\SigmaIOAddr)
    go s=do s}\mp@subsup{s}{}{\prime}\leftarrow\mathrm{ case mnext s}
                                    y }->\mathrm{ go y
SO\longrightarrow}\longrightarrow\mp@subsup{\textrm{S}}{1}{\longrightarrow
```


Instance II: Collecting Abstract Interpreter

Instance II: Collecting Abstract Interpreter

$$
\begin{gathered}
\text { State (State (List)) Monad } \\
+
\end{gathered}
$$

Semantic Interface Implementation

$$
+
$$

Generic fixed point machinery

Collecting Semantics and Fixed Points

$\hat{f} \in \mathcal{P}(\Sigma) \rightarrow \mathcal{P}(\Sigma)$
$\hat{f}(\hat{S})=\left\{\hat{\varsigma}_{0}\right\} \cup\left\{\hat{\varsigma}^{\prime} \mid \hat{\varsigma} \rightsquigarrow \hat{\varsigma}^{\prime}\right.$ and $\left.\hat{\varsigma} \in \hat{S}\right\}$

$$
\operatorname{lfp}_{\sqsubseteq} f=\bigsqcup_{i \geq 0} f^{i}(\perp)
$$

$$
\operatorname{lfp}_{\sqsubseteq} f=\bigsqcup_{i \geq 0} f^{i}(\perp)
$$

kleeneIt $::($ Lattice $a) \Rightarrow(a \rightarrow a) \rightarrow a$ kleeneIt $f=$ loop \perp
where loop $c=\operatorname{let} c^{\prime}=f c$ in if $c^{\prime} \sqsubseteq c$ then c else loop c^{\prime}

$$
\operatorname{lfp}_{\sqsubseteq} f=\bigsqcup_{i \geq 0} f^{i}(\perp)
$$

kleeneIt $::($ Lattice $a) \Rightarrow(a \rightarrow a) \rightarrow a$
kleeneIt $f=$ loop \perp
where loop $c=$ let $c^{\prime}=f c$ in
if $c^{\prime} \sqsubseteq c$ then c else loop c^{\prime}
class Collecting m a $f p \mid f p \rightarrow a, f p \rightarrow m$ where applyStep $::(a \rightarrow m a) \rightarrow f p \rightarrow f p$ inject $:: a \rightarrow f p$
exploreFP :: (Lattice fp, Collecting ma fp) \Rightarrow

$$
(a \rightarrow m a) \rightarrow a \rightarrow f p
$$

exploreFP step $c=$ kleeneIt \mathcal{F}
where $\mathcal{F} s=$ inject $c \sqcup$ applyStep step s

$$
\operatorname{lfp}_{\sqsubseteq} f=\bigsqcup_{i \geq 0} f^{i}(\perp)
$$

kleeneIt $::($ Lattice $a) \Rightarrow(a \rightarrow a) \rightarrow a$ kleeneIt $f=$ loop \perp
where loop $c=$ let $c^{\prime}=f c$ in if $c^{\prime} \sqsubseteq c$ then c else loop c^{\prime}

exploreFP :: (Lattice fp, Collecting ma fp) \Rightarrow

$$
(a \rightarrow m a) \rightarrow a \rightarrow f p
$$

exploreFP step $c=$ kleeneIt \mathcal{F}
where $\mathcal{F} s=$ inject $c \sqcup$ applyStep step s

$$
\operatorname{lfp}_{\sqsubseteq} f=\bigsqcup_{i \geq 0} f^{i}(\perp)
$$

kleeneIt $::($ Lattice $a) \Rightarrow(a \rightarrow a) \rightarrow a$ kleeneIt $f=$ loop \perp
where loop $c=$ let $c^{\prime}=f c$ in if $c^{\prime} \sqsubseteq c$ then c else loop c^{\prime}

exploreFP :: (Lattice fp, Collecting ma fp) \Rightarrow

$$
(a \rightarrow m a) \rightarrow a \rightarrow f p
$$

exploreFP step $c=$ kleeneIt \mathcal{F}
where $\mathcal{F} s=$ inject $c \sqcup$ applyStep step s

$$
\operatorname{lfp}_{\sqsubseteq} f=\bigsqcup_{i \geq 0} f^{i}(\perp)
$$

kleeneIt $::($ Lattice $a) \Rightarrow(a \rightarrow a) \rightarrow a$
kleeneIt $f=$ loop \perp
where loop $c=\operatorname{let} c^{\prime}=f c$ in
if $c^{\prime} \sqsubseteq c$ then c else loop c^{\prime}

runAnalysis :: (CPSInterface ma, Lattice fp, Collecting $m(P \Sigma a) f p) \Rightarrow$ $C E x p \rightarrow f p$
runAnalysis $e=$ exploreFP mnext (e, Map.empty)
runAnalysis :: (CPSInterface ma, Lattice fp, Collecting $m(P \Sigma a) \mathrm{fp}) \Rightarrow$ $C E x p \rightarrow f p$
runAnalysis $e=$ exploreFP mnext $\underset{\text { so }}{(e, \text { Map.empty })}$
runAnalysis :: (CPSInterface m a, Lattice fp, Collecting $m(P \Sigma a) f p) \Rightarrow$ $C E x p \rightarrow f p$
runAnalysis $e=$ exploreFP mnext (e, Map.empty)

So
runAnalysis :: (CPSInterface m a, Lattice fp, Collecting $m(P \Sigma a) f p) \Rightarrow$ $C E x p \rightarrow f p$
runAnalysis $e=$ exploreFP mnext $(e$, Map.empty $)$

Implementing
 Collecting Abstract Interpreter in 3 steps

I. Fixing the Monad

type StorePassing s $g=$ StateT $g($ StateT $s[])$

I. Fixing the Monad

non-determinism

type StorePassing s $g=$ StateT $g($ StateT $s[])$

I. Fixing the Monad

non-determinism

type StorePassing s $g=$ StateT $g(\underbrace{\text { StateT } s}_{\text {store }} \overbrace{[]})$

I. Fixing the Monad

non-determinism
type StorePassing s $g=\underbrace{\text { StateTg } g}_{\text {time }}(\underbrace{\text { StateT } s}_{\text {store }} \overbrace{[]})$

2. Providing Denotations

instance CPSInterface
(StorePassing (Store Integer) Integer) Integer where

$$
\begin{aligned}
\text { fun } \rho(\text { Lam } l) & =\text { return } \$ \text { Clo }(l, \rho) \\
\text { fun } \rho(\text { Ref } v) & =\text { lift } \$ \text { getsNDSet } \$ \lambda \sigma \rightarrow \sigma!(\rho!v) \\
\arg \rho(\text { Lam } l) & =\text { return } \$ \text { Clo }(l, \rho) \\
\arg \rho(\text { Ref } v) & =\text { lift } \$ \text { getsNDSet } \$ \lambda \rightarrow \sigma!(\rho!v) \\
& =\text { lift } \$ \text { modify } \$ \\
a \mapsto d & \quad \text { Map.insert a (singleton } d) \\
& =\text { gets id } \\
\text { alloc } v \quad \text { tick proc ps }= & \text { modify } \$ \lambda t \rightarrow t+1
\end{aligned}
$$

3. Starting and Stepping

instance (Ord s, Ord a, Ord g, HasInitial g, Lattice s) \Rightarrow Collecting (StorePassing s g)
($P \Sigma a$)
$(\mathcal{P}((P \Sigma a, g), s))$ where
inject $p=$ singleton $\$((p$, initial $), \perp)$
applyStep step $f p=j$ joinWith runStep $f p$ where runStep $((\varsigma, t), s)=$

Set.fromList \$ runState T (runState $T($ step $\varsigma) t) s$

3. Starting and Stepping

instance (Ord s, Ord a, Ord g, HasInitial g, Lattice s) \Rightarrow Collecting (StorePassing s g)
starting $(P \Sigma a)$ $(\mathcal{P}((P \Sigma a, g), s))$ where inject $p=$ singleton $\$((p$, initial $), \perp)$
applyStep step $f p=j$ joinWith runStep $f p$ where runStep $((\varsigma, t), s)=$

Set.fromList \$ runState T (runState $T(s t e p ~ \varsigma) t) s$

3. Starting and Stepping

instance (Ord s, Ord a, Ord g, HasInitial g, Lattice s) \Rightarrow Collecting (StorePassing s g)
starting $(P \Sigma a)$ $(\mathcal{P}((P \Sigma a, g), s))$ where inject $p=$ singleton $\$((p$, initial $), \perp)$
applyStep step fp $=$ joinWith runStep $f p$ where
runStep $((\varsigma, t), s)=$
Set.fromList \$ runState T (runState $T($ step $\varsigma) t) s$ stepping
runAnalysis exp $:: \mathcal{P}((P \Sigma$ Integer, Integer $)$, Store Integer $)$

a program

runAnalysisexp $:: \mathcal{P}((P \Sigma$ Integer, Integer $)$, Store Integer $)$

Abstract Interpretation

can be seen as a computational effect

Monadic refactoring disentangles transitions from their denotation

A monad specifies the state-space

Check the paper

- Generic implementation of polyvariance
- Language-independent store
- Language-independent abstract counting
- Reusable abstract garbage collection
- Pluggable widening strategies

Try the code

http://github.com/ilyasergey/monadic-cfa

- Featherweight Java
- Direct-style λ-calculus
- Monadic machinery
- Full-fledged abstract GC
- Counting
- Lots of examples

Try the code

http://github.com/ilyasergey/monadic-cfa

- Featherweight Java
- Direct-style λ-calculus
- Monadic machinery
- Full-fledged abstract GC
- Counting
- Lots of examples

