Monadic Abstract Interpreters

Ilya Sergey Dominique Devriese Matthew Might

Jan Midtgaard David Darais Dave Clarke Frank Piessens

PLDI 2013

"My life goal: Replace myself with a ${\rm IAT}_{E}{\rm X}$ macro."

Matthew Might Abstract Interpreters for Free, SAS 2010

M. Might, "Abstract Interpreters for Free"

small-step concrete semantics (interpreter)

=>

small-step abstract semantics (analysis)

Replace myself with a library of reusable functions.

small-step concrete semantics implementation

and

small-step abstract semantics implementation

small-step concrete semantics implementation

and

small-step abstract semantics implementation

(for the price of one + \mathcal{E})

How do you design

an abstract interpreter?

How do you implement

an abstract interpreter?

Our perspective

Separate the interpreter machinery from a program analysis logic

Separate the interpreter machinery from a program analysis logic

and also

Make different aspects of a program analysis reusable between languages and semantics

Monads for the separation of concerns

Starting point: Concrete vs. Abstract

Concrete CPS semantics

$$(\llbracket (f \ \&_1 \dots \&_n) \rrbracket, \rho, \sigma) \Rightarrow (call, \rho'', \sigma'), \text{ where}$$
$$(\llbracket (\lambda \ (v_1 \dots v_n) \ call) \rrbracket, \rho') = \mathcal{A}(f, \rho, \sigma)$$
$$\rho'' = \rho' [v_i \mapsto a_i]$$
$$\sigma' = \sigma [a_i \mapsto \mathcal{A}(\&_i, \rho, \sigma)]$$
$$a_i = alloc(v_i, \sigma)$$

where

$$\mathcal{A}(v,\rho,\sigma) = \sigma(\rho(v))$$
$$\mathcal{A}(lam,\rho,\sigma) = (lam,\rho)$$

Abstract CPS semantics

$$(\llbracket (f \ \&_1 \dots \&_n) \rrbracket, \hat{\rho}, \hat{\sigma}) \rightsquigarrow (call, \hat{\rho}'', \hat{\sigma}'), \text{ where}$$
$$(\llbracket (\lambda \ (v_1 \dots v_n) \ call) \rrbracket, \hat{\rho}') \in \hat{\mathcal{A}}(f, \hat{\rho}, \hat{\sigma})$$
$$\hat{\rho}'' = \hat{\rho}' [v_i \mapsto \hat{a}_i]$$
$$\hat{\sigma}' = \hat{\sigma} \sqcup [\hat{a}_i \mapsto \hat{\mathcal{A}}(\&_i, \hat{\rho}, \hat{\sigma})]$$
$$\hat{a}_i = \widehat{alloc}(v_i, \hat{\sigma})$$

where

$$\hat{\mathcal{A}}(v,\hat{\rho},\hat{\sigma}) = \hat{\sigma}(\hat{\rho}(v))$$
$$\hat{\mathcal{A}}(lam,\hat{\rho},\hat{\sigma}) = \{(lam,\hat{\rho})\}$$

Similar, but not the same!

$$(\llbracket (f \ \&_1 \dots \&_n) \rrbracket, \rho, \sigma) \Rightarrow (call, \rho'', \sigma'), \text{ where}$$
$$(\llbracket (\lambda \ (v_1 \dots v_n) \ call) \rrbracket, \rho') = \mathcal{A}(f, \rho, \sigma)$$
$$\rho'' = \rho' [v_i \mapsto a_i]$$
$$\sigma' = \sigma [a_i \mapsto \mathcal{A}(\&_i, \rho, \sigma)]$$
$$a_i = alloc(v_i, \sigma)$$

$$(\llbracket (f \ \&_1 \dots \&_n) \rrbracket, \hat{\rho}, \hat{\sigma}) \rightsquigarrow (call, \hat{\rho}'', \hat{\sigma}'), \text{ where}$$
$$(\llbracket (\lambda \ (v_1 \dots v_n) \ call) \rrbracket, \hat{\rho}') \in \hat{\mathcal{A}}(f, \hat{\rho}, \hat{\sigma})$$
$$\hat{\rho}'' = \hat{\rho}' [v_i \mapsto \hat{a}_i]$$
$$\hat{\sigma}' = \hat{\sigma} \sqcup [\hat{a}_i \mapsto \hat{\mathcal{A}}(\mathscr{X}_i, \hat{\rho}, \hat{\sigma})]$$
$$\hat{a}_i = \widehat{alloc}(v_i, \hat{\sigma})$$

How can we unify their implementations?

Commonalities

Differences

Commonalities

Commonalities

Shape of the computation

Concrete

$$\overbrace{(\llbracket (f \ x_1 \dots x_n) \rrbracket, \rho, \sigma)}^{\varsigma} \Rightarrow (call, \rho'', \sigma')$$

$$\underbrace{(\llbracket (f \ \boldsymbol{x}_1 \dots \boldsymbol{x}_n) \rrbracket, \hat{\rho}, \hat{\sigma})}_{\hat{\varphi}} \rightsquigarrow (call, \hat{\rho}'', \hat{\sigma}')$$

Abstract

Differences

Differences

Treatment of semantic values

Concrete

 $(\llbracket (f \ \&_1 \dots \&_n) \rrbracket, \rho, \sigma) \Rightarrow (call, \rho'', \sigma'), \text{ where}$ $(\llbracket (\lambda \ (v_1 \dots v_n) \ call) \rrbracket, \rho') = \mathcal{A}(f, \rho, \sigma)$ $\rho'' = \rho' [v_i \mapsto a_i]$ $\sigma' = \sigma [a_i \mapsto \mathcal{A}(\&_i, \rho, \sigma)]$ $a_i = alloc(v_i, \sigma)$

Abstract

 $(\llbracket (f \ \&linet{\basis}_1 \dots \&linet{\basis}_n) \rrbracket, \hat{\rho}, \hat{\sigma}) \rightsquigarrow (call, \hat{\rho}'', \hat{\sigma}'), \text{ where}$ $(\llbracket (\lambda \ (v_1 \dots v_n) \ call) \rrbracket, \hat{\rho}') \in \hat{\mathcal{A}}(f, \hat{\rho}, \hat{\sigma})$ $\hat{\rho}'' = \hat{\rho}' [v_i \mapsto \hat{a}_i]$ $\hat{\sigma}' = \hat{\sigma} \sqcup [\hat{a}_i \mapsto \hat{\mathcal{A}}(\&linet{\basis}_i, \hat{\rho}, \hat{\sigma})]$ $\hat{a}_i = \widehat{alloc}(v_i, \hat{\sigma})$

Differences

Treatment of semantic values

Concrete

$$(\llbracket (f \ \&_1 \dots \&_n) \rrbracket, \rho, \sigma) \Rightarrow (call, \rho'', \sigma'), \text{ where}$$
$$(\llbracket (\lambda \ (v_1 \dots v_n) \ call) \rrbracket, \rho') \bigoplus \mathcal{A}(f, \rho, \sigma)$$
$$\rho'' = \rho' [v_i \mapsto a_i]$$
$$\sigma' = \sigma [a_i \mapsto \mathcal{A} \&_i, \rho, \sigma)]$$
$$a_i = alloc(v_i, \sigma)$$

Abstract

 $(\llbracket (f \ \&_1 \dots \&_n) \rrbracket, \hat{\rho}, \hat{\sigma}) \rightsquigarrow (call, \hat{\rho}'', \hat{\sigma}'), \text{ where}$ $(\llbracket (\lambda \ (v_1 \dots v_n) \ call) \rrbracket, \hat{\rho}') \bigoplus \hat{\mathcal{A}}(f, \hat{\rho}, \hat{\sigma})$ $\hat{\rho}'' = \hat{\rho}' [v_i \mapsto \hat{a}_i]$ $\hat{\sigma}' = \hat{\sigma} \bigsqcup [\hat{a}_i \mapsto \widehat{\mathcal{A}}(\hat{x}_i, \hat{\rho}, \hat{\sigma})]$ $\hat{a}_i = \widehat{alloc}(v_i, \hat{\sigma})$

• Forks

- Forks
- Advances timestamps

- Forks
- Advances timestamps
- Performs Abstract GC

- Forks
- Advances timestamps
- Performs Abstract GC
- Keeps track of contexts

- Forks
- Advances timestamps
- Performs Abstract GC
- Keeps track of contexts
- Makes counting

- Forks
- Advances timestamps
- Performs Abstract GC
- Keeps track of contexts
- Makes counting

Computational Effects

nondeterminism

tracing

Advances timestamps

state modification

Performs Abstract GC

tracing

Keeps track of contexts

state modification

Makes counting

Computational Effects

Abstract Interpretation as a computational effect

Eugenio Moggi

Notions of computation and monads, Inf. Comput., 1991

... we identify the type A with the object of *values* (of type A) and obtain the object of *computations* (of type A) by applying an unary type-constructor T to A. We call T a *notion of computation*, since it abstracts away from the type of values computations may produce.

Eugenio Moggi

Notions of computation and monads, Inf. Comput., 1991

... we identify the type A with the object of *values* (of type A) and obtain the object of *computations* (of type A) by applying an unary type-constructor T to A. We call T a *notion of computation*, since it abstracts away from the type of values computations may produce.

Philip Wadler

Comprehending Monads, LFP, 1991

It is relatively straightforward to adopt Moggi's technique of structuring denotational specifications into a technique for structuring functional programs. This paper presents a simplified version of Moggi's ideas, framed in a way better suited to functional programmers than semanticists; in particular, no knowledge of category theory is assumed.

Philip Wadler

Comprehending Monads, LFP, 1991

It is relatively straightforward to adopt Moggi's technique of structuring denotational specifications into a technique for structuring functional programs. This paper presents a simplified version of Moggi's ideas, framed in a way better suited to functional programmers than semanticists; in particular, no knowledge of category theory is assumed.

Let's program some semantics in Haskell

Implementing and Refactoring time-stamped k-CFA for CPS

 $v \in Var$ is a set of identifiers $lam \in Lam ::= (\lambda (v_1 \dots v_n) call)$ $f, x \in \mathsf{AExp} = \mathsf{Var} + \mathsf{Lam}$ $call \in Call ::= (f x_1 \dots x_n) + Exit$ $\hat{\varsigma} \in \hat{\Sigma} = \mathsf{Call} \times \widehat{Env} \times \widehat{Store} \times \widehat{Time}$ $\hat{\rho} \in Env = \operatorname{Var} \rightharpoonup Addr$ $\hat{\sigma} \in \widehat{Store} = \widehat{Addr} \to \mathcal{P}(\hat{D})$ $\hat{d} \in \hat{D} = \widehat{Clo}$ $\widehat{clo} \in \widehat{Clo} = \operatorname{Lam} \times \widehat{Env}$ $\hat{a} \in Addr = Var \times Time$ $\hat{t} \in \widetilde{Time} = \operatorname{Call}^{\leq k}$

$$\hat{\varsigma} \in \hat{\Sigma} = \operatorname{Call} \times \widehat{Env} \times \widehat{Store} \times \widehat{Time}$$
$$\hat{\rho} \in \widehat{Env} = \operatorname{Var} \rightharpoonup \widehat{Addr}$$
$$\hat{\sigma} \in \widehat{Store} = \widehat{Addr} \rightarrow \mathcal{P}(\hat{D})$$
$$\hat{d} \in \hat{D} = \widehat{Clo}$$
$$\widehat{clo} \in \widehat{Clo} = \operatorname{Lam} \times \widehat{Env}$$
$$\hat{a} \in \widehat{Addr} = \operatorname{Var} \times \widehat{Time}$$
$$\hat{t} \in \widehat{Time} = \operatorname{Call}^{\leq k}$$

 $\begin{aligned} \mathbf{type} \ \Sigma &= (CExp, Env, Store, Time) \\ \mathbf{type} \ k \rightharpoonup v &= Map \ k \ v \\ \mathbf{type} \ Env &= Var \rightharpoonup Addr \\ \mathbf{type} \ Store &= Addr \rightharpoonup \mathcal{P} \ Val \\ \mathbf{data} \ Val &= Clo \ (Lambda, Env) \\ & \mathbf{deriving} \ (Eq, Ord) \\ \mathbf{type} \ Addr &= (Var, Time) \\ \mathbf{type} \ Time &= [CExp] \end{aligned}$

$$(\rightsquigarrow) \in \Sigma \to \mathcal{P}(\Sigma)$$

$$\underbrace{\widehat{\zeta}}_{(\llbracket (f \ \&n \ \dots \ \&n \) \rrbracket, \hat{\rho}, \hat{\sigma}, \hat{t})}_{\hat{\zeta} lo} \rightsquigarrow (call, \hat{\rho}'', \hat{\sigma}', \hat{t}'), \text{ if}}_{(\llbracket (\lambda \ (v_1 \ \dots \ v_n) \ call) \rrbracket, \hat{\rho}')} \in \hat{\mathcal{A}}(f, \hat{\rho}, \hat{\sigma})$$

$$\widehat{t}' = \widehat{tick}(\widehat{clo}, \hat{\varsigma})$$

$$\widehat{a}_i = \widehat{alloc}(v_i, \hat{t}')$$

$$\widehat{d}_i \in \hat{\mathcal{A}}(\&_i, \hat{\rho}, \hat{\sigma})$$

$$\widehat{\rho}'' = \widehat{\rho}' [v_i \mapsto \hat{a}_i]$$

$$\widehat{\sigma}' = \hat{\sigma} \sqcup [\hat{a}_i \mapsto \{\hat{d}_i\}]$$

$$next :: \Sigma \to [\Sigma]$$

$$\underbrace{\hat{\varsigma}}_{(\llbracket (f \ \varpi_1 \dots \varpi_n) \rrbracket, \hat{\rho}, \hat{\sigma}, \hat{t})}_{\hat{\varsigma}} \rightsquigarrow (call, \hat{\rho}'', \hat{\sigma}', \hat{t}'), \text{ if}}_{(\llbracket (\lambda \ (v_1 \dots v_n) \ call) \rrbracket, \hat{\rho}') \in \hat{\mathcal{A}}(f, \hat{\rho}, \hat{\sigma})$$

$$\widehat{clo}$$

$$\hat{t}' = \widehat{tick}(\widehat{clo}, \hat{\varsigma})$$

$$\hat{a}_i = \widehat{alloc}(v_i, \hat{t}')$$

$$\hat{d}_i \in \hat{\mathcal{A}}(\varpi_i, \hat{\rho}, \hat{\sigma})$$

$$\hat{\rho}'' = \hat{\rho}' [v_i \mapsto \hat{a}_i]$$

$$\hat{\sigma}' = \hat{\sigma} \sqcup [\hat{a}_i \mapsto \{\hat{d}_i\}]$$

$next :: \Sigma \to [\Sigma]$

$$next \ \varsigma@(Call \ f \ aes, \rho, \sigma, t) = [(call, \rho'', \sigma', t') \mid proc@(Clo \ (vs \Rightarrow call, \rho')) \leftarrow Set.toList \ (arg \ (f, \rho, \sigma)), \\ \mathbf{let} \ t' = tick \ (proc, \varsigma) \\ as = [alloc \ (v, t', proc, \varsigma) \mid v \leftarrow vs] \\ ds = [arg \ (\mathfrak{a}, \rho, \sigma) \mid \mathfrak{a} \leftarrow aes] \\ \rho'' = \rho' \ /\!\!/ \ [v \Longrightarrow a \mid v \leftarrow vs \mid a \leftarrow as] \\ \sigma' = \sigma \sqcup [a \Longrightarrow d \mid a \leftarrow as \mid d \leftarrow ds]] \end{cases}$$

next $\varsigma = [\varsigma]$

- Capture non-determinism in the monad
- Pull the store into the monad
- Pull the time into the monad
- Abstract over k-CFA addresses

- Capture non-determinism in the monad
 - Pull the store into the monad
 - Pull the time into the monad
 - Abstract over k-CFA addresses

$next :: \Sigma \to [\Sigma]$

$$next \ \varsigma@(Call \ f \ aes, \rho, \sigma, t) = [(call, \rho'', \sigma', t') |$$

$$proc@(Clo \ (vs \Rightarrow call, \rho')) \leftarrow Set.toList \ (arg \ (f, \rho, \sigma)),$$

$$let \ t' = tick \ (proc, \varsigma)$$

$$as = [alloc \ (v, t', proc, \varsigma) | \ v \leftarrow vs]$$

$$ds = [arg \ (x, \rho, \sigma) | \ x \leftarrow aes]$$

$$\rho'' = \rho' \ /\!\!/ \ [v \Longrightarrow a | \ v \leftarrow vs | \ a \leftarrow as]$$

$$\sigma' = \sigma \sqcup [a \Longrightarrow d | \ a \leftarrow as | \ d \leftarrow ds]]$$

next $\varsigma = [\varsigma]$

$$mnext :: \Sigma \to [\Sigma]$$

$$next \ \varsigma@(Call \ f \ aes, \rho, \sigma, t) = [(call, \rho'', \sigma', t') |$$

$$proc@(Clo \ (vs \Rightarrow call, \rho')) \leftarrow Set.toList \ (arg \ (f, \rho, \sigma)),$$

$$let \ t' = tick \ (proc, \varsigma)$$

$$as = [alloc \ (v, t', proc, \varsigma) | \ v \leftarrow vs]$$

$$ds = [arg \ (x, \rho, \sigma) | \ x \leftarrow aes]$$

$$\rho'' = \rho' \ /\!\!/ \ [v \Longrightarrow a | \ v \leftarrow vs | \ a \leftarrow as]$$

$$\sigma' = \sigma \sqcup [a \Longrightarrow d | \ a \leftarrow as | \ d \leftarrow ds]]$$

next $\varsigma = [\varsigma]$

$$mnext :: \Sigma \to [\Sigma]$$

$$mnext \ \varsigma@(Call \ f \ aes, \rho, \sigma, t) = \mathbf{do} \\ proc@(Clo \ (vs \Rightarrow call, \rho')) \leftarrow Set.toList \ (arg \ (f, \rho, \sigma)), \\ \mathbf{let} \ t' = tick \ (proc, \varsigma) \\ as = [alloc \ (v, t', proc, \varsigma) \mid v \leftarrow vs] \\ ds = [arg \ (\mathfrak{a}, \rho, \sigma) \mid \mathfrak{a} \leftarrow aes] \\ \rho'' = \rho' \ /\!\!/ \ [v \Longrightarrow a \mid v \leftarrow vs \mid a \leftarrow as] \\ \sigma' = \sigma \sqcup [a \Longrightarrow d \mid a \leftarrow as \mid d \leftarrow ds] \\ return \ (call, \rho'', \sigma', t') \\ next \ \varsigma = [\varsigma]$$

$$mnext :: \Sigma \to [\Sigma]$$

$$mnext \ \varsigma@(Call \ f \ aes, \rho, \sigma, t) = \mathbf{do} \\ proc@(Clo \ (vs \Rightarrow call, \rho')) \leftarrow Set.toList \ (arg \ (f, \rho, \sigma)), \\ \mathbf{let} \ t' = tick \ (proc, \varsigma) \\ as = [alloc \ (v, t', proc, \varsigma) \mid v \leftarrow vs] \\ ds = [arg \ (x, \rho, \sigma) \mid x \leftarrow aes] \\ \rho'' = \rho' \ /\!\!/ \ [v \Longrightarrow a \mid v \leftarrow vs \mid a \leftarrow as] \\ \sigma' = \sigma \sqcup [a \Longrightarrow d \mid a \leftarrow as \mid d \leftarrow ds] \\ return \ (call, \rho'', \sigma', t') \\ mnext \ \varsigma = return \ \varsigma$$

 $\begin{array}{ll} fun & :: (Env, Store) \rightarrow AExp \rightarrow [Val] \\ arg & :: (Env, Store) \rightarrow AExp \rightarrow [Val] \\ tick & :: Val \rightarrow State \rightarrow [Time] \\ alloc :: (Time, Val, State) \rightarrow Var \rightarrow [Addr] \end{array}$

 $\begin{array}{l} fun & :: (Env, Store) \to AExp \to [Val] \\ arg & :: (Env, Store) \to AExp \to [Val] \\ tick & :: Val \to State \to [Time] \\ alloc :: (Time, Val, State) \to Var \to [Addr] \end{array} \right\} \quad \hat{\mathcal{A}}(f, \hat{\rho}, \hat{\sigma})$

$$mnext :: \Sigma \to [\Sigma]$$

$$mnext \ \varsigma @(Call \ f \ aes, \rho, \sigma, t) = \mathbf{do} \\ proc @(Clo \ (vs \Rightarrow call, \rho')) \leftarrow Set.toList \ (arg \ (f, \rho, \sigma)) \\ \mathbf{let} \ t' = tick \ (proc, \varsigma) \\ as = [alloc \ (v, t', proc, \varsigma) \mid v \leftarrow vs] \\ ds = [arg \ (x, \rho, \sigma) \mid x \leftarrow aes] \\ \rho'' = \rho' \ /\!/ \ [v \Longrightarrow a \mid v \leftarrow vs \mid a \leftarrow as] \\ \sigma' = \sigma \sqcup [a \Longrightarrow d \mid a \leftarrow as \mid d \leftarrow ds] \\ return \ (call, \rho'', \sigma', t') \\ mnext \ \varsigma = return \ \varsigma$$

$$mnext :: \Sigma \to [\Sigma]$$

$$mnext \ \varsigma@(Call \ f \ aes, \rho, \sigma, t) = \mathbf{do}$$

$$proc@(Clo \ (vs \Rightarrow call, \rho')) \leftarrow fun \ (\rho, \sigma) \ f$$

$$t' \leftarrow tick \ proc \ \varsigma$$

$$\mathbf{let} \ as = mapM \ (alloc \ (t', proc, \varsigma)) \ vs$$

$$ds = mapM \ (arg \ (\rho, \sigma)) \ aes$$

$$\rho'' = \rho' \ / [v \Longrightarrow a \ | \ v \leftarrow vs \ | \ a \leftarrow as]$$

$$\sigma' = \sigma \sqcup [a \Longrightarrow d \ | \ a \leftarrow as \ | \ d \leftarrow ds]$$

$$return \ (call, \rho'', \sigma', t')$$

 $mnext \ \varsigma = return \ \varsigma$

- Capture non-determinism in the monad
 - Pull the store into the monad
 - Pull the time into the monad
 - Abstract over k-CFA addresses

- Capture non-determinism in the monad
- Pull the store into the monad
 - Pull the time into the monad
 - Abstract over k-CFA addresses

 $\begin{array}{ll} fun & :: (Env, Store) \rightarrow AExp \rightarrow [Val] \\ arg & :: (Env, Store) \rightarrow AExp \rightarrow [Val] \\ tick & :: Val \rightarrow State \rightarrow [Time] \\ alloc :: (Time, Val, State) \rightarrow Var \rightarrow [Addr] \end{array}$

 $\begin{array}{ll} fun & :: (Env, Store) \rightarrow AExp \rightarrow \llbracket Val \\ arg & :: (Env, Store) \rightarrow AExp \rightarrow \llbracket Val \\ tick & :: Val \rightarrow State \rightarrow \llbracket Time \\ alloc & :: (Time, Val, State) \rightarrow Var \rightarrow \llbracket Addr \end{array}$

class Monad $m \Rightarrow CPSInterface m$ where $fun :: Env \rightarrow AExp \rightarrow m Val$ $arg :: Env \rightarrow AExp \rightarrow m Val$ $(\mapsto) :: Addr \rightarrow Val \rightarrow m$ () $alloc :: Time \rightarrow Var \rightarrow m Addr$ $tick :: Val \rightarrow P\Sigma \rightarrow m Time$

class Monad
$$m \Rightarrow CPSInterface \ m$$
 where
fun :: $Env \rightarrow AExp \rightarrow m$ Val
 arg :: $Env \rightarrow AExp \rightarrow m$ Val
 (\mapsto) :: $Addr \rightarrow Val \rightarrow m$ ()
 $alloc$:: $Time \rightarrow Var \rightarrow m$ Addr
 $tick$:: $Val \rightarrow P\Sigma \rightarrow m$ Time

class Monad
$$m \Rightarrow CPSInterface m$$
 where
 $fun :: Env \rightarrow AExp \rightarrow m$ Val
 $arg :: Env \rightarrow AExp \rightarrow m$ Val
 $(\mapsto) :: Addr \rightarrow Val \rightarrow m$ ()
 $alloc :: Time \rightarrow Var \rightarrow m$ Addr
 $tick :: Val \rightarrow P\Sigma \rightarrow m$ Time
 $(CExp, Env, Time) -$ "partial state"

Semantic Interface

$$mnext :: \Sigma \to [\Sigma]$$

$$mnext \ \varsigma@(Call \ f \ aes, \rho, \sigma, t) = \mathbf{do}$$

$$proc@(Clo \ (vs \Rightarrow call, \rho')) \leftarrow fun \ (\rho, \sigma) \ f$$

$$t' \leftarrow tick \ proc \ \varsigma$$

$$\mathbf{let} \ as = mapM \ (alloc \ (t', proc, \varsigma)) \ vs$$

$$ds = mapM \ (arg \ (\rho, \sigma)) \ aes$$

$$\rho'' = \rho' \ /\!\!/ \ [v \Longrightarrow a \ | \ v \leftarrow vs \ | \ a \leftarrow as]$$

$$\sigma' = \sigma \sqcup [a \Longrightarrow d \ | \ a \leftarrow as \ | \ d \leftarrow ds]$$

$$return \ (call, \rho'', \sigma', t')$$

$$mnext \ \varsigma = return \ \varsigma$$

$mnext :: (CPSInterface \ m) \Rightarrow P\Sigma \rightarrow m \ P\Sigma$

$$mnext \ \varsigma@(Call \ f \ aes, \rho, \sigma, t) = \mathbf{do}$$

$$proc@(Clo \ (vs \Rightarrow call, \rho')) \leftarrow fun \ (\rho, \sigma) \ f$$

$$t' \leftarrow tick \ proc \ \varsigma$$

$$\mathbf{let} \ as = mapM \ (alloc \ (t', proc, \varsigma)) \ vs$$

$$ds = mapM \ (arg \ (\rho, \sigma)) \ aes$$

$$\rho'' = \rho' \ /\!\!/ \ [v \Longrightarrow a \ | \ v \leftarrow vs \ | \ a \leftarrow as]$$

$$\sigma' = \sigma \sqcup \ [a \Longrightarrow d \ | \ a \leftarrow as \ | \ d \leftarrow ds]$$

$$return \ (call, \rho'', \sigma', t')$$

$$mnext \ \varsigma = return \ \varsigma$$

$mnext :: (CPSInterface \ m) \Rightarrow P\Sigma \rightarrow m \ P\Sigma$

$$mnext \ \varsigma @(Call \ f \ aes, \rho, \sigma, t) = \mathbf{do}$$

$$proc @(Clo \ (vs \Rightarrow call, \rho')) \leftarrow fun \ (\rho, \sigma) \ f$$

$$t' \leftarrow tick \ proc \ \varsigma$$

$$as \leftarrow mapM \ (alloc \ t') \ vs$$

$$ds \leftarrow mapM \ (arg \ \rho) \ aes$$

$$\mathbf{let} \ \rho'' = \rho' \ /\!\!/ \ [v \Longrightarrow a \ | \ v \leftarrow vs \ | \ a \leftarrow as]$$

$$sequence \ [a \mapsto d \ | \ a \leftarrow as \ | \ d \leftarrow ds]$$

$$return \ (call, \rho'', \sigma', t')$$

$$mnext \ \varsigma = return \ \varsigma$$

- Capture non-determinism in the monad
- Pull the store into the monad
 - Pull the time into the monad
 - Abstract over k-CFA addresses

- Capture non-determinism in the monad
- Pull the store into the monad
- Pull the time into the monad
 - Abstract over k-CFA addresses

class Monad $m \Rightarrow CPSInterface m$ where $fun :: Env \rightarrow AExp \rightarrow m Val$ $arg :: Env \rightarrow AExp \rightarrow m Val$ $(\mapsto) :: Addr \rightarrow Val \rightarrow m$ () $alloc :: Time \rightarrow Var \rightarrow m Addr$ $tick :: Val \rightarrow P\Sigma \rightarrow m Time$

class Monad $m \Rightarrow CPSInterface m$ where $fun :: Env \rightarrow AExp \rightarrow m Val$ $arg :: Env \rightarrow AExp \rightarrow m Val$ $(\mapsto) :: Addr \rightarrow Val \rightarrow m ()$ $alloc :: Var \rightarrow m Addr$ $tick :: Val \rightarrow P\Sigma \rightarrow m ()$

class Monad $m \Rightarrow CPSInterface \ m \ where$ fun $:: Env \to AExp \to m Val$ arg :: $Env \rightarrow AExp \rightarrow m$ Val $(\mapsto) :: Addr \to Val \to m$ alloc :: $Var \rightarrow m \ Addr$ tick :: $Val \to P\Sigma \to m$ () (*CExp*, *Env*) - "pure partial state"

$mnext :: (CPSInterface \ m) \Rightarrow P\Sigma \rightarrow m \ P\Sigma$

$$mnext \ \varsigma@(Call \ f \ aes, \rho, \sigma, t) = \mathbf{do}$$

$$proc@(Clo \ (vs \Rightarrow call, \rho')) \leftarrow fun \ (\rho, \sigma) \ f$$

$$t' \leftarrow tick \ proc \ ps$$

$$as \leftarrow mapM \ (alloc \ t') \ vs$$

$$ds \leftarrow mapM \ (arg \ \rho) \ aes$$

$$\mathbf{let} \ \rho'' = \rho' \ /\!/ \ [v \Longrightarrow a \ | \ v \leftarrow vs \ | \ a \leftarrow as]$$

$$sequence \ [a \mapsto d \ | \ a \leftarrow as \ | \ d \leftarrow ds]$$

$$return \ (call, \rho'', \sigma', t')$$

$$mnext \ \varsigma = return \ \varsigma$$

$mnext :: (CPSInterface \ m) \Rightarrow P\Sigma \rightarrow m \ P\Sigma$

$$mnext \ \varsigma@(Call \ f \ aes, \rho, \sigma, t) = \mathbf{do}$$

$$proc@(Clo \ (vs \Rightarrow call, \rho')) \leftarrow fun \ (\rho, \sigma) \ f$$

$$tick \ proc \ ps$$

$$as \leftarrow mapM \ alloc \ vs$$

$$ds \leftarrow mapM \ (arg \ \rho) \ aes$$

$$\mathbf{let} \ \rho'' = \rho' \ /\!\!/ \ [v \Longrightarrow a \ | \ v \leftarrow vs \ | \ a \leftarrow as]$$

$$sequence \ [a \mapsto d \ | \ a \leftarrow as \ | \ d \leftarrow ds]$$

$$return \ (call, \rho'', \sigma', t')$$

$$mnext \ \varsigma = return \ \varsigma$$

- Capture non-determinism in the monad
- Pull the store into the monad
- Pull the time into the monad
 - Abstract over k-CFA addresses

- Capture non-determinism in the monad
- Pull the store into the monad
- Pull the time into the monad
- Abstract over k-CFA addresses

type $P\Sigma$ = (CExp, Env)type Env= Var $\rightarrow Addr$ data Val= Clo (Lambda, Env)type Store= Addr $\rightarrow \mathcal{P}(Val)$

type Addr = (Var, Time)**type** Time = [CExp] type $P\Sigma$ = (CExp, Env)type Env= Var $\rightarrow Addr$ data Val= Clo (Lambda, Env)type Store= Addr $\rightarrow \mathcal{P}(Val)$

type $P\Sigma a = (CExp, Env a)$ **type** $Env a = Var \rightarrow a$ **data** Val a = Clo (Lambda, Env a)**type** $Store a = a \rightarrow \mathcal{P}(Val a)$

- Capture non-determinism in the monad
- Pull the store into the monad
 - Pull the time into the monad
 - Abstract over k-CFA addresses

- Capture non-determinism in the monad
- Pull the store into the monad
- Pull the time into the monad
- Abstract over k-CFA addresses

- List
 Capture non-determinism in the monad
- Pull the store into the monad
- Writer Pull the time into the monad
 - Abstract over k-CFA addresses

Monadic Small-Step Transition

 $mnext :: CPSInterface \ m \ a \Rightarrow P\Sigma \ a \to m \ (P\Sigma \ a)$ mnext $ps@(Call f aes, \rho) = \mathbf{do}$ $proc@(Clo (vs \Rightarrow call', \rho')) \leftarrow fun \rho f$ tick proc ps $as \leftarrow mapM \ alloc \ vs$ $ds \leftarrow mapM (arg \rho) aes$ let $\rho'' = \rho' / [v \Longrightarrow a \mid v \leftarrow vs \mid a \leftarrow as]$ sequence $[a \mapsto d \mid a \leftarrow as \mid d \leftarrow ds]$ return (call', ρ'') mnext $\varsigma = return \varsigma$

Monadic Small-Step Transition

 $mnext :: CPSInterface \ m \ a \Rightarrow P\Sigma \ a \to m \ (P\Sigma \ a)$ mnext $ps@(Call f aes, \rho) = \mathbf{do}$ $proc@(Clo (vs \Rightarrow call', \rho')) \leftarrow fun \rho f$ tick proc ps $as \leftarrow mapM \ alloc \ vs$ $ds \leftarrow mapM (arg \rho) aes$ let $\rho'' = \rho' / [v \Longrightarrow a \mid v \leftarrow vs \mid a \leftarrow as]$ sequence $[a \mapsto d \mid a \leftarrow as \mid d \leftarrow ds]$ return (call', ρ'') mnext $\varsigma = return \varsigma$

class Monad $m \Rightarrow CPSInterface \ m \ a \ where$ fun :: Env $a \rightarrow AExp \rightarrow m$ (Val a) arg :: Env $a \rightarrow AExp \rightarrow m$ (Val a) (\mapsto) :: $a \rightarrow Val \ a \rightarrow m$ () alloc :: Var $\rightarrow m \ a$ tick :: Val $a \rightarrow P\Sigma \ a \rightarrow m$ ()

The Semantic Interface

class Monad $m \Rightarrow CPSInterface \ m \ a \ where$ fun :: Env $a \rightarrow AExp \rightarrow m$ (Val a) arg :: Env $a \rightarrow AExp \rightarrow m$ (Val a) (\mapsto) :: $a \rightarrow Val \ a \rightarrow m$ () alloc :: Var $\rightarrow m \ a$ tick :: Val $a \rightarrow P\Sigma \ a \rightarrow m$ ()

The Semantic Interface

class Monad $m \Rightarrow CPSInterface \ m \ a \ where$ fun :: Env $a \rightarrow AExp \rightarrow m$ (Val a) arg :: Env $a \rightarrow AExp \rightarrow m$ (Val a) (\mapsto) :: $a \rightarrow Val \ a \rightarrow m$ () alloc :: Var $\rightarrow m \ a$ tick :: Val $a \rightarrow P\Sigma \ a \rightarrow m$ ()

Needs to be instantiated

So what now?

Instantiating Monadic Semantics

Instance I: Shallow Concrete Interpreter

Instance I: Shallow Concrete Interpreter

IO

╋

Semantic Interface Implementation

╋

Standard driver loop machinery

Addresses

$data IOAddr = IOAddr \{lookup :: IORef (Val IOAddr)\}$

Read / Write

 $readIOAddr :: IOAddr \rightarrow IO (Val IOAddr)$ $readIOAddr = readIORef \circ lookup$ $writeIOAddr :: IOAddr \rightarrow Val IOAddr \rightarrow IO ()$ $writeIOAddr = writeIORef \circ lookup$

Semantic Functions for Concrete Semantics

instance CPSInterface IO IOAddr where fun ρ (Lam l) = return \$ Clo (l, ρ) fun ρ (Ref v) = readIOAddr (ρ ! v) arg ρ (Lam l) = return \$ Clo (l, ρ) arg ρ (Ref v) = readIOAddr (ρ ! v) addr \mapsto v = writeIOAddr addr v alloc v = liftM IOAddr \$ newIORef \perp tick ___ = return ()

Semantic Functions for **Concrete** Semantics Monad instance $CPSInterface \ \widetilde{IO} \ IOAddr$ where fun ρ (Lam l) = return \$ Clo (l, ρ) fun ρ (Ref v) = readIOAddr ($\rho ! v$) $arg \ \rho \ (Lam \ l) = return \ \$ \ Clo \ (l, \rho)$ $arg \ \rho \ (Ref \ v) = readIOAddr \ (\rho ! v)$ $addr \mapsto v = writeIOAddr addr v$ $= liftM \ IOAddr \$ $newIORef \perp$ alloc v $tick __ = return ()$

Semantic Functions for **Concrete** Semantics AddrMonad instance $CPSInterface \ IO \ IOAddr$ where fun ρ (Lam l) = return \$ Clo (l, ρ) fun ρ (Ref v) = readIOAddr ($\rho ! v$) $arg \ \rho \ (Lam \ l) = return \ \$ \ Clo \ (l, \rho)$ $arg
ho (Ref v) = readIOAddr (\rho ! v)$ $addr \mapsto v = writeIOAddr addr v$ $= liftM \ IOAddr \$ newIORef \perp alloc vtick _ _ = return ()

$$\begin{array}{l} interpret :: CExp \rightarrow IO \ (P\Sigma \ IOAddr) \\ interpret \ e = go \ (e, Map.empty) \\ \textbf{where} \ go :: (P\Sigma \ IOAddr) \rightarrow IO \ (P\Sigma \ IOAddr) \\ go \ s = \textbf{do} \ s' \leftarrow mnext \ s \\ \textbf{case} \ s' \ \textbf{of} \ x@(Exit, _) \rightarrow return \ x \\ y \qquad \qquad \rightarrow go \ y \end{array}$$

$$\begin{array}{l} \textit{interpret} :: \textit{CExp} \rightarrow \textit{IO} (P\Sigma \textit{IOAddr}) \\ \textit{interpret} \ e = \textit{go} (e, \textit{Map.empty}) \ \textbf{S0} \\ \textbf{where} \ \textit{go} :: (P\Sigma \textit{IOAddr}) \rightarrow \textit{IO} (P\Sigma \textit{IOAddr}) \\ \textit{go} \ s = \textbf{do} \ s' \leftarrow \textit{mnext} \ s \\ \textbf{case} \ s' \ \textbf{of} \ x@(\textit{Exit}, _) \rightarrow \textit{return} \ x \\ y \qquad \qquad \rightarrow \textit{go} \ y \end{array}$$

$$\begin{array}{l} \textit{interpret} :: \textit{CExp} \rightarrow \textit{IO} (P\Sigma \textit{IOAddr}) \\ \textit{interpret} \ e = \textit{go} (e, \textit{Map.empty}) \\ \textbf{where} \ \textit{go} :: (P\Sigma \textit{IOAddr}) \rightarrow \textit{IO} (P\Sigma \textit{IOAddr}) \\ \textit{go} \ s = \textbf{do} \ s' \leftarrow \textit{mnext} \ s \\ \textbf{case} \ s' \ \textbf{of} \ x@(\textit{Exit}, _) \rightarrow \textit{return} \ x \\ y \qquad \qquad \rightarrow \textit{go} \ y \end{array}$$

S0

$$\begin{array}{l} \textit{interpret} :: \textit{CExp} \rightarrow \textit{IO} (P\Sigma \textit{IOAddr}) \\ \textit{interpret} \ e = \textit{go}(e, \textit{Map.empty}) \\ \textbf{where} \ \textit{go} :: (P\Sigma \textit{IOAddr}) \rightarrow \textit{IO} (P\Sigma \textit{IOAddr}) \\ \textit{go} \ s = \textbf{do} \ s' \leftarrow \textit{mnext} \ s \\ \textbf{case} \ s' \ \textbf{of} \ x@(\textit{Exit}, _) \rightarrow \textit{return} \ x \\ y \qquad \qquad \rightarrow \textit{go} \ y \end{array}$$

Instance II: Collecting Abstract Interpreter

Instance II: Collecting Abstract Interpreter

Semantic Interface Implementation

╋

Generic fixed point machinery

Collecting Semantics and Fixed Points

$\hat{f} \in \mathcal{P}(\Sigma) \to \mathcal{P}(\Sigma)$ $\hat{f}(\hat{S}) = \{\hat{\varsigma}_0\} \cup \{\hat{\varsigma}' \mid \hat{\varsigma} \rightsquigarrow \hat{\varsigma}' \text{ and } \hat{\varsigma} \in \hat{S}\}$

$\operatorname{lfp}_{\sqsubseteq} f = \bigsqcup_{i \ge 0} f^i(\bot)$

$$\operatorname{lfp}_{\sqsubseteq} f = \bigsqcup_{i \ge 0} f^i(\bot)$$

 $kleeneIt :: (Lattice \ a) \Rightarrow (a \rightarrow a) \rightarrow a$ $kleeneIt \ f = loop \perp$ where loop $c = let \ c' = f \ c \ in$ if $c' \sqsubseteq c \ then \ c \ else \ loop \ c'$

$$\operatorname{lfp}_{\sqsubseteq} f = \bigsqcup_{i \ge 0} f^i(\bot)$$

$$kleeneIt :: (Lattice \ a) \Rightarrow (a \rightarrow a) \rightarrow a$$

$$kleeneIt \ f = loop \perp$$

where loop $c = let \ c' = f \ c \ in$
if $c' \sqsubseteq c \ then \ c \ else \ loop \ c'$

class Collecting $m \ a \ fp \ | \ fp \to a, fp \to m$ where $applyStep :: (a \to m \ a) \to fp \to fp$ $inject :: a \to fp$

$$exploreFP :: (Lattice fp, Collecting m a fp) \Rightarrow \\ (a \to m a) \to a \to fp \\ exploreFP step c = kleeneIt \mathcal{F} \\ \textbf{where } \mathcal{F} s = inject \ c \sqcup applyStep step s$$

$$\operatorname{lfp}_{\sqsubseteq} f = \bigsqcup_{i \ge 0} f^i(\bot)$$

$$kleeneIt :: (Lattice \ a) \Rightarrow (a \to a) \to a$$

$$kleeneIt \ f = loop \perp$$

where loop $c = let \ c' = f \ c \ in$
if $c' \sqsubseteq c \ then \ c \ else \ loop \ c'$

$$(\rightsquigarrow) \qquad \qquad \textbf{class Collecting m a fp | fp \to a, fp \to m where} \\ \rightarrow applyStep :: (a \to m a) \to fp \to fp \\ inject :: a \to fp \end{cases}$$

$$exploreFP :: (Lattice fp, Collecting m a fp) \Rightarrow (a \to m a) \to a \to fp$$

$$exploreFP step \ c = kleeneIt \ \mathcal{F}$$

where \ \mathcal{F} \ s = inject \ c \sqcup applyStep \ step \ s

$$\operatorname{lfp}_{\sqsubseteq} f = \bigsqcup_{i \ge 0} f^i(\bot)$$

$$kleeneIt :: (Lattice \ a) \Rightarrow (a \rightarrow a) \rightarrow a$$

$$kleeneIt \ f = loop \perp$$

where loop $c = let \ c' = f \ c \ in$
if $c' \sqsubseteq c \ then \ c \ else \ loop \ c'$

where $\mathcal{F} s = inject \ c \sqcup applyStep \ step \ s$

$$\operatorname{lfp}_{\sqsubseteq} f = \bigsqcup_{i \ge 0} f^i(\bot)$$

$$kleeneIt :: (Lattice \ a) \Rightarrow (a \rightarrow a) \rightarrow a$$

$$kleeneIt \ f = loop \perp$$

where loop $c = let \ c' = f \ c \ in$
if $c' \sqsubseteq c \ then \ c \ else \ loop \ c'$

$$\begin{array}{c} (\leadsto) & \textbf{class Collecting m a fp | fp \to a, fp \to m where} \\ & applyStep :: (a \to m a) \to fp \to fp \\ & \text{inject :: } a \to fp \\ \\ \hline \{\cdot\} & exploreFP :: (Lattice fp, Collecting m a fp) \Rightarrow \\ & (a \to m a) \to a \to fp \\ exploreFP step \ c = kleeneIt \ \mathcal{F} \\ \textbf{where } \mathcal{F} \ s = \underbrace{inject \ c \sqcup applyStep \ step \ s} \\ & \hat{f}(\hat{S}) = \{\hat{\varsigma}_0\} \cup \{\hat{\varsigma}' \mid \hat{\varsigma} \rightsquigarrow \hat{\varsigma}' \text{ and } \hat{\varsigma} \in \hat{S} \} \end{array}$$

 $\begin{aligned} runAnalysis :: (CPSInterface \ m \ a, Lattice \ fp, \\ Collecting \ m \ (P\Sigma \ a) \ fp) \Rightarrow \\ CExp \rightarrow fp \\ runAnalysis \ e = exploreFP \ mnext \ (e, Map.empty) \end{aligned}$

$$runAnalysis :: (CPSInterface \ m \ a, Lattice \ fp, \\ Collecting \ m \ (P\Sigma \ a) \ fp) \Rightarrow \\ CExp \rightarrow fp \\ runAnalysis \ e = exploreFP \ mnext \ (e, Map.empty) \\ \textbf{So}$$

$$\begin{aligned} runAnalysis :: (CPSInterface \ m \ a, Lattice \ fp, \\ Collecting \ m \ (P\Sigma \ a) \ fp) \Rightarrow \\ CExp \rightarrow fp \\ runAnalysis \ e = exploreFP \ mnext \ (e, Map.empty) \end{aligned}$$

S0

$$\begin{aligned} runAnalysis :: (CPSInterface \ m \ a, Lattice \ fp, \\ Collecting \ m \ (P\Sigma \ a) \ fp) \Rightarrow \\ CExp \rightarrow fp \\ runAnalysis \ e = exploreFP \ mnext \ (e, Map.empty) \end{aligned}$$

Implementing Collecting Abstract Interpreter in 3 steps

type StorePassing $s \ g = StateT \ g \ (StateT \ s \ [])$

non-determinism

type StorePassing $s \ g = StateT \ g \ (StateT \ s \ [])$

non-determinism

type StorePassing $s \ g = StateT \ g \ (StateT \ s \ [])$

store

non-determinism

2. Providing Denotations

instance CPSInterface (StorePassing (Store Integer) Integer) Integer where fun ρ (Lam l) = return \$ Clo (l, ρ) fun ρ (Ref v) = lift \$ getsNDSet \$ $\lambda \sigma \rightarrow \sigma ! (\rho ! v)$ $arg \ \rho \ (Lam \ l) = return \ \$ \ Clo \ (l, \rho)$ arg ρ (Ref v) = lift \$ getsNDSet \$ $\lambda \sigma \rightarrow \sigma ! (\rho ! v)$ $a \mapsto d = lift \$ modify \$$ Map.insert a (singleton d) alloc v= gets idtick proc ps = modify $\lambda t \rightarrow t+1$

3. Starting and Stepping

instance (Ord s, Ord a, Ord g, HasInitial g, Lattice s) \Rightarrow Collecting (StorePassing s g) (P Σ a) (P Σ a, g), s)) **where** inject p = singleton \$ ((p, initial), \bot) applyStep step fp = joinWith runStep fp **where** runStep ((ς , t), s) = Set.fromList \$ runStateT (runStateT (step ς) t) s

3. Starting and Stepping

instance (Ord s, Ord a, Ord g, HasInitial g, Lattice s) \Rightarrow Collecting (StorePassing s g) starting (P Σ a) (P Σ (P Σ a, g), s)) where inject p = singleton \$ ((p, initial), \bot) applyStep step fp = joinWith runStep fp where runStep ((ς , t), s) = Set.fromList \$ runStateT (runStateT (step ς) t) s

3. Starting and Stepping

instance (Ord s, Ord a, Ord g, HasInitial g, Lattice s) \Rightarrow Collecting (StorePassing s g) starting (P Σ a) (P ((P Σ a, g), s)) where inject p = singleton \$ ((p, initial), \bot) applyStep step fp = joinWith runStep fp where runStep ((ς , t), s) = Set.fromList \$ runStateT (runStateT (step ς) t) s stepping $runAnalysis exp :: \mathcal{P} ((P\Sigma Integer, Integer), Store Integer)$

Abstract Interpretation can be seen as a computational effect

Monadic refactoring disentangles transitions from their denotation

A monad specifies the state-space

Check the paper

- Generic implementation of polyvariance
- Language-independent store
- Language-independent abstract counting
- Reusable abstract garbage collection
- Pluggable widening strategies

Try the code

http://github.com/ilyasergey/monadic-cfa

- Featherweight Java
- Direct-style λ -calculus
- Monadic machinery

- Full-fledged abstract GC
- Counting
- Lots of examples

Try the code

http://github.com/ilyasergey/monadic-cfa

- Featherweight Java
- Direct-style λ -calculus
- Monadic machinery

- Full-fledged abstract GC
- Counting
- Lots of examples

