Fixing Idioms

A recursion primitive for Applicative DSLs

Dominique Devriese llya Sergey
Dave Clarke Frank Piessens

Functional DSLs

- Functional languages are a good host for elegant DSLs
- Shallow functional embeddings inherit desirable features: abstraction, types, reasoning.
- Missing: a typed, functional representation of cyclic structures?
- This problem is holding DSLs back, e.g. parser DSLs:
- Why only parse? Why not analyse, visualise, debug?
- Less optimisation than parser generators?

Representations of Cyclic Structures

- Mutable references, referential identity: imperative : $^{-}$
- Deep embeddings: not shallow : $^{-}$
- Reduce cyclic to infinite + laziness:
- Makes recursion unobservable for DSL algorithms ©
- In other words: DSL restricted to least fixpoints ©
- Previous work:
- implicitly take fixpoint at top-level (like CFGs)
- represent DSL terms as open recursive
- no recursion inside term, modularity disadvantages: ©

Functional Representations of Cyclic Structures

- Add a fixpoint primitive $\mu x \ldots x$... to DSL.
- Shallow functional representation of binding? HOAS?
- Correct version of HOAS: PHOAS or Finally Tagless

Applicative DSLs

Applicative DSLs:

- good for DSLs representing computations with hidden effects or hidden inputs (e.g. parsers)
- contrary to Monads: still analysable (less power to user, more power to library)
- effect-value separation:
- Monad: $(\gg):: m a \rightarrow(a \rightarrow m b) \rightarrow m b$
- Applicative: $(\circledast):: m(a \rightarrow b) \rightarrow m a \rightarrow m b$
- natural setting for effectful recursion (not Monadic value recursion)

Different fixpoint primitives for different DSLs?

- Applicative DSLs differ from lambda calculi (e.g. Oliveira and Löh):
- Add pure :: $a \rightarrow p$ a.
- Subtract lam $::(p a \rightarrow p b) \rightarrow p(a \rightarrow b)$.

Note: adding Lam in an Applicative DSL is not a solution, e.g. parsing.

- Observation: finally tagless fixpoint primitive not enough for advanced parser transformations!
- Need to specify and exploit value-effects-separation during transformation!
- Surprising: re-specify what already follows?

Contributions

- Fixpoint primitive afix:
class Applicative $p \Rightarrow$ ApplicativeFix p where
afix : : $(\forall$ q. Applicative $q \Rightarrow$

$$
(p \circ q) a \rightarrow(p \circ q) a) \rightarrow p a
$$

- Properties:
- Rank-2 type specifies effect-values separation for afix's argument
- Axiom specifying fixpoint behaviour
- Practicality:
- Reduce mutual recursion to simple (uses generic programming)
- alet-notation: shallow syntactic sugar implemented in GHC
- Applications:
- Left-recursion removal for Applicative parser combinators
- Analyse cyclicity in FRP model of circuits

A Closer Look

- Composing Applicative Functors: $(p \circ q)$
- afix's type

Composing Applicative Functors

class Applicative p where

$$
\text { pure }:: a \rightarrow p a
$$

$(\circledast):: p(a \rightarrow b) \rightarrow p a \rightarrow p b$
newtype $(p \circ q) a=\operatorname{Comp}\{\operatorname{comp}:: p(q a)\}$
instance (Applicative p, Applicative $q) \Rightarrow$
Applicative $(p \circ q)$ where ...
class Applicative $p \Rightarrow$ ApplicativeFix p where afix :: $(\forall$ q.Applicative $q \Rightarrow$

$$
(p \circ q) a \rightarrow(p \circ q) a) \rightarrow p a
$$

The type

$$
f:: \forall \text { q. Applicative } q \Rightarrow(p \circ q) a \rightarrow(p \circ q) a
$$

specifies Applicative effects-values separation for f (see paper).
Crucial: a restricted equivalent of lambda...

$$
\begin{aligned}
& \text { coapp }: \text { : Applicative } p \Rightarrow(\forall q \text {. Applicative } q \Rightarrow \\
& \quad(p \circ q) a \rightarrow(p \circ q) b) \rightarrow p(a \rightarrow b)
\end{aligned}
$$

Practicality

- nafix: arity-generic version of afix for mutual recursion
- alet-notation: shallow syntactic sugar implemented in GHC

$$
\begin{aligned}
& \text { alet expr }=(+) \Phi \text { expr } \circledast \text { token '+' } \circledast \text { factor } \\
& \oplus \text { factor } \\
& \text { factor }=(*) \Phi \text { factor } \circledast \text { token '*' } \circledast \text { term } \\
& \oplus \text { term } \\
& \text { term }=\text { token ' }(' \circledast \text { expr } \circledast \text { token ')' } \\
& \oplus \text { decimal } \\
& \text { in expr }
\end{aligned}
$$

Desugars into application of nafix.

Applications

- Test circuits for correct cyclicity (see paper).
- Left-recursion removal:

$$
\begin{aligned}
& \text { exprParse }:: \text { String } \rightarrow \text { Int } \\
& \text { exprParse }=\text { parseUU (transformPaull expr) } \\
& \text { testParse }=\text { exprParse } " 1+7 * 3+(8 * 1+2 * 6) "
\end{aligned}
$$

(Intuition behind need for coapp in left-recursion removal)

$$
\begin{aligned}
& \text { expr }:: \ldots \Rightarrow p \text { Int } \\
& \text { expr }=\operatorname{afix} \$ \lambda s \rightarrow \operatorname{digit} \oplus(+) \Phi s \circledast \operatorname{digit}
\end{aligned}
$$

is transformed (essentially) into

$$
\begin{aligned}
& \text { expr }:: \ldots \Rightarrow p \text { Int } \\
& \text { expr }=\text { flip }(\$) \text { (\$ digit } \circledast \text { many exprD } \\
& \text { exprD }:: \ldots \Rightarrow p(\text { Int } \rightarrow \text { Int }) \\
& \text { expr } D=\text { flip }(+) \text { (\$ digit }
\end{aligned}
$$

To derive exprD, we go from type $(\forall q$. Applicative $q \Rightarrow(p \circ q)$ Int $\rightarrow(p \circ q)$ Int) to $p(I n t \rightarrow I n t)$.
This is coapp!

Conclusion

- Shallow functional DSLs need shallow functional representation of recursion
- Applicative DSLs have special needs
- We show one suitable solution with
- a new finally tagless primitive afix whose type enforces effects-values separation
- support for mutual recursion using generically programmed nafix
- shallow syntactic sugar through alet with implementation in GHC
- applications to parsing and circuit design
- Read our paper if you want to know more!

