
Fixing Idioms
A recursion primitive for Applicative DSLs

Dominique Devriese Ilya Sergey
Dave Clarke Frank Piessens

Functional DSLs

I Functional languages are a good host for elegant DSLs

I Shallow functional embeddings inherit desirable features:
abstraction, types, reasoning.

I Missing: a typed, functional representation of cyclic
structures?

I This problem is holding DSLs back, e.g. parser DSLs:
I Why only parse? Why not analyse, visualise, debug?
I Less optimisation than parser generators?

Representations of Cyclic Structures

I Mutable references, referential identity: imperative /
I Deep embeddings: not shallow /
I Reduce cyclic to infinite + laziness:

I Makes recursion unobservable for DSL algorithms /
I In other words: DSL restricted to least fixpoints /

I Previous work:
I implicitly take fixpoint at top-level (like CFGs)
I represent DSL terms as open recursive
I no recursion inside term, modularity disadvantages: /

Functional Representations of Cyclic Structures

I Add a fixpoint primitive µx x . . . to DSL.

I Shallow functional representation of binding? HOAS?

I Correct version of HOAS: PHOAS or Finally Tagless

Applicative DSLs

Applicative DSLs:

I good for DSLs representing computations with hidden effects
or hidden inputs (e.g. parsers)

I contrary to Monads: still analysable (less power to user, more
power to library)

I effect-value separation:
I Monad : (>>=) :: m a→ (a→ m b)→ m b
I Applicative: (~) :: m (a→ b)→ m a→ m b

I natural setting for effectful recursion (not Monad ic value
recursion)

Different fixpoint primitives for different DSLs?

I Applicative DSLs differ from lambda calculi (e.g. Oliveira and
Löh):

I Add pure :: a→ p a.
I Subtract lam :: (p a→ p b)→ p (a→ b).

Note: adding Lam in an Applicative DSL is not a solution,
e.g. parsing.

I Observation: finally tagless fixpoint primitive not enough for
advanced parser transformations!

I Need to specify and exploit value-effects-separation during
transformation!

I Surprising: re-specify what already follows?

Contributions

I Fixpoint primitive afix :

class Applicative p ⇒ ApplicativeFix p where
afix :: (∀ q.Applicative q ⇒

(p ◦ q) a→ (p ◦ q) a)→ p a
I Properties:

I Rank-2 type specifies effect-values separation for afix ’s
argument

I Axiom specifying fixpoint behaviour

I Practicality:
I Reduce mutual recursion to simple (uses generic programming)
I alet-notation: shallow syntactic sugar implemented in GHC

I Applications:
I Left-recursion removal for Applicative parser combinators
I Analyse cyclicity in FRP model of circuits

A Closer Look

I Composing Applicative Functors: (p ◦ q)

I afix ’s type

Composing Applicative Functors

class Applicative p where
pure :: a→ p a
(~) :: p (a→ b)→ p a→ p b

newtype (p ◦ q) a = Comp {comp :: p (q a)}
instance (Applicative p,Applicative q)⇒

Applicative (p ◦ q) where ...

afix ’s type

class Applicative p ⇒ ApplicativeFix p where
afix :: (∀ q.Applicative q ⇒

(p ◦ q) a→ (p ◦ q) a)→ p a
The type

f :: ∀ q.Applicative q ⇒ (p ◦ q) a→ (p ◦ q) a

specifies Applicative effects-values separation for f (see paper).

Crucial: a restricted equivalent of lambda...

coapp :: Applicative p ⇒ (∀ q . Applicative q ⇒
(p ◦ q) a→ (p ◦ q) b)→ p (a→ b)

Practicality

I nafix : arity-generic version of afix for mutual recursion

I alet-notation: shallow syntactic sugar implemented in GHC

alet expr = (+) #$ expr ⊂∗ token ’+’~ factor
� factor

factor = (∗) #$ factor ⊂∗ token ’*’~ term
� term

term = token ’(’ ∗⊃ expr ⊂∗ token ’)’

� decimal
in expr

Desugars into application of nafix .

Applications

I Test circuits for correct cyclicity (see paper).

I Left-recursion removal:

exprParse :: String → Int
exprParse = parseUU (transformPaull expr)

testParse = exprParse "1+7*3+(8*1+2*6)"

(Intuition behind need for coapp in left-recursion removal)

expr :: ...⇒ p Int
expr = afix $ λs → digit � (+) #$ s ~ digit

is transformed (essentially) into

expr :: ...⇒ p Int
expr = flip ($) #$ digit ~ many exprD
exprD :: ...⇒ p (Int → Int)
exprD = flip (+) #$ digit

To derive exprD, we go from type
(∀ q.Applicative q ⇒ (p ◦ q) Int → (p ◦ q) Int) to p (Int → Int).
This is coapp!

Conclusion

I Shallow functional DSLs need shallow functional
representation of recursion

I Applicative DSLs have special needs
I We show one suitable solution with

I a new finally tagless primitive afix whose type enforces
effects-values separation

I support for mutual recursion using generically programmed
nafix

I shallow syntactic sugar through alet with implementation in
GHC

I applications to parsing and circuit design

I Read our paper if you want to know more!

