
Static Analysis
and Code Optimizations

in Glasgow Haskell Compiler

Ilya Sergey

12.12.12

ilya.sergey@gmail.com

1

mailto:ilya.sergey@gmail.com
mailto:ilya.sergey@gmail.com

The Goal

Discuss what happens when we run

ghc -O MyProgram.hs

2

The Plan

• Recall how laziness is implemented in GHC and what drawbacks it
might cause;

• Introduce the worker/wrapper transformation -
an optimization technique implemented in GHC;

• Realize why we need static analysis to do the transformations;

• Take a brief look at the GHC compilation pipeline and the Core
language;

• Meet two types of static analysis: forward and backwards;

• Recall some basics of denotational semantics and take a look at the
mathematical basics of some analyses in GHC;

• Introduce and motivate the CPR analysis.

3

Why Laziness
Might be Harmful

and

How the Harm Can Be Reduced

4

module Main where

import System.Environment
import Text.Printf

main = do
 [n] <- map read `fmap` getArgs
 printf "%f\n" (mysum n)

mysum :: Double -> Double
mysum n = myfoldl (+) 0 [1..n]

myfoldl :: (a -> b -> a) -> a -> [b] -> a
myfoldl f z0 xs0 = lgo z0 xs0
 where
 lgo z [] = z
 lgo z (x:xs) = lgo (f z x) xs

5

> ghc --make -RTS -rtsopts Sum.hs
> time ./Sum 1e6 +RTS -K100M
500000500000.0

real! 0m0.583s
user! 0m0.509s
sys! 0m0.068s

Compile and run

Compile optimized and run
> ghc --make -fforce-recomp -RTS -rtsopts -O Sum.hs
> time ./Sum 1e6
500000500000.0

real! 0m0.153s
user! 0m0.101s
sys! 0m0.011s

6

Collecting Runtime Statistics

Profiling results for the non-optimized program

 225,137,464 bytes allocated in the heap
 195,297,088 bytes copied during GC
 107 MB total memory in use

 INIT time 0.00s (0.00s elapsed)
 MUT time 0.21s (0.24s elapsed)
 GC time 0.36s (0.43s elapsed)
 EXIT time 0.00s (0.00s elapsed)
 Total time 0.58s (0.67s elapsed)

 %GC time 63.2% (64.0% elapsed)

> ghc --make -RTS -rtsopts -fforce-recomp Sum.hs
> ./Sum 1e6 +RTS -sstderr -K100M

7

Collecting Runtime Statistics

Profiling results for the optimized program

> ghc --make -RTS -rtsopts -fforce-recomp -O Sum.hs
> ./Sum 1e6 +RTS -sstderr -K100M

 92,082,480 bytes allocated in the heap
 30,160 bytes copied during GC
 1 MB total memory in use

 INIT time 0.00s (0.00s elapsed)
 MUT time 0.07s (0.08s elapsed)
 GC time 0.00s (0.00s elapsed)
 EXIT time 0.00s (0.00s elapsed)
 Total time 0.07s (0.08s elapsed)

 %GC time 1.1% (1.4% elapsed)

8

Time Profiling

Profiling results for the non-optimized program

> ghc --make -RTS -rtsopts -prof -fforce-recomp Sum.hs
> ./Sum 1e6 +RTS -p -K100M

! total time = 0.24 secs
! total alloc = 124,080,472 bytes

COST CENTRE MODULE %time %alloc

mysum Main 52.7 74.1
myfoldl.lgo Main 43.6 25.8
myfoldl Main 3.7 0.0

9

Time Profiling

Profiling results for the optimized program

> ghc --make -RTS -rtsopts -prof -fforce-recomp -O Sum.hs
> ./Sum 1e6 +RTS -p -K100M

! total time = 0.14 secs
! total alloc = 92,080,364 bytes

COST CENTRE MODULE %time %alloc

mysum Main 92.1 99.9
myfoldl.lgo Main 7.9 0.0

10

Memory Profiling

Profiling results for the non-optimized program

> ghc --make -RTS -rtsopts -prof -fforce-recomp Sum.hs
> ./Sum 1e6 +RTS -hy -p -K100M
> hp2ps -e8in -c Sum.hp

Sum 1e6 +RTS -p -hy -K100M 3,127,720 bytes x seconds Wed Dec 12 15:01 2012

seconds0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.2 0.2

by
te

s

0M

2M

4M

6M

8M

10M

12M

14M

16M

18M

BLACKHOLE

*

Double

11

Memory Profiling

Profiling results for the optimized program

> ghc --make -RTS -rtsopts -prof -fforce-recomp -O Sum.hs
> ./Sum 1e6 +RTS -hy -p -K100M
> hp2ps -e8in -c Sum.hp

Sum 1e6 +RTS -p -hy -K100M 2,377 bytes x seconds Wed Dec 12 15:02 2012

seconds0.0 0.0 0.0 0.1 0.1 0.1 0.1

by
te

s

0k

5k

10k

15k

20k

25k

30k

(,)

ForeignPtrContents

IO

WEAK

Buffer

->[]

MUT_VAR_CLEAN

Handle__

MUT_ARR_PTRS_CLEAN

[]

ARR_WORDS

12

The Problem

Too Many Allocation of Double objects

The cause:
Too many thunks allocated for lazily computed values

In our example the computation of Double values is
delayed by the calls to lgo.

mysum :: Double -> Double
mysum n = myfoldl (+) 0 [1..n]

myfoldl :: (a -> b -> a) -> a -> [b] -> a
myfoldl f z0 xs0 = lgo z0 xs0
 where
 lgo z [] = z
 lgo z (x:xs) = lgo (f z x) xs

13

Intermezzo

Call-by-Value Call-by-Need

Arguments of a function call
are fully evaluated
before the invocation.

Arguments of a function call
are not evaluated
before the invocation.
Instead, a pointer (thunk)
to the code is created, and,
once evaluated, the value is
memoized.

Thunk (Urban Dictionary):
To sneak up on someone and bean him with a heavy blow
to the back of the head.

“Jim got thunked going home last night. Serves him right for walking
in a dark alley with all his paycheck in his pocket.”

14

How to thunk a thunk

• Apply its delayed value as a function;

• Examine its value in a case-expression.

case p of
 (a, b) -> f a b

p will be evaluated to the weak-head normal form,
sufficient to examine whether it is a pair.

However, its components will remain unevaluated (i.e., thunks).

Remark:
Only evaluation of boxed values can be delayed via thunks.

15

Our Example from CBN’s Perspective
mysum :: Double -> Double
mysum n = myfoldl (+) 0 [1..n]

myfoldl :: (a -> b -> a) -> a -> [b] -> a
myfoldl f z0 xs0 = lgo z0 xs0
 where
 lgo z [] = z
 lgo z (x:xs) = lgo (f z x) xs

mysum 3

myfoldl (+) 0 (1:2:3:[])

lgo z1 (1:2:3:[])

lgo z2 (2:3:[])

lgo z3 (3:[])

lgo z4 []

!z4

z1 -> 0

z2 -> 1 + !z1

z3 -> 2 + !z2

z4 -> 3 + !z3

Now GC can do the job...

=)
=)
=)
=)
=)
=)

16

Getting Rid of Redundant Thunks

Obvious Solution:
Replace CBN by CBV, so no need in thunk.

Obvious Problem:
The semantics of a “lazy” program can
change unpredictably.

f x e = if x > 0
 then x + 1
 else e

f 5 (error “Urk”)

17

Getting Rid of Redundant Thunks

Let’s reformulate:

Replace CBN by CBV only for strict functions,
i.e., those that always evaluate their argument
to the WHNF.

f x e = if x > 0
 then x + 1
 else e

f 5 (error “Urk”)

• f is strict in x

• f is non-strict (lazy) in e

18

A Convenient Definition of Strictness

Definition:

A function f of one argument is strict iff

f undefined = undefined

Strictness is formulated similarly for functions of
multiple arguments.

f x e = if x > 0
 then x + 1
 else e

f 5 (error “Urk”)

19

Enforcing CBV for Function Calls

Worker/Wrapper Transformation

• The worker does all the job, but takes unboxed;

• The wrapper serves as an impedance matcher and inlined at every
call site.

f :: (Int, Int) -> Int
f p = e

f :: (Int, Int) -> Int
f p = case p of (a, b) -> $wf a b

$wf :: Int -> Int -> Int
$wf a b = let p = (a, b) in e

Splitting a function into two parts

+

20

Some Redundant Job Done?

f :: (Int, Int) -> Int
f p = case p of (a, b) -> $wf a b

$wf :: Int -> Int -> Int
$wf a b = let p = (a, b) in e

• f takes the pair apart and passes components to $wf;

• $wf construct the pair again.

21

Strictness to the Rescue

f :: (Int, Int) -> Int
f p = case p of (a, b) -> $wf a

$wf :: Int -> Int
$wf a = let p = (a, error “Urk”)
 in
 (case p of (a, b) -> a) + 1

A strict function always examines its parameter.

So, we just rely on a smart rewriter of case-expressions.

f :: (Int, Int) -> Int
f p = (case p of (a, b) -> a) + 1

+

22

Strictness to the Rescue

f :: (Int, Int) -> Int
f p = case p of (a, b) -> $wf a

$wf :: Int -> Int
$wf a = a + 1

A strict function always examines its parameter.

So, we just rely on a smart rewriter of case-expressions.

f :: (Int, Int) -> Int
f p = (case p of (a, b) -> a) + 1

+

23

Our Example

mysum :: Double -> Double
mysum n = myfoldl (+) 0 [1..n]

myfoldl :: (a -> b -> a) -> a -> [b] -> a
myfoldl f z0 xs0 = lgo z0 xs0
 where
 lgo z [] = z
 lgo z (x:xs) = lgo (f z x) xs

Step 1: Inline myfoldl

24

Our Example

mysum :: Double -> Double
mysum n = lgo 0 n
 where
 lgo :: Double -> [Double] -> Double
 lgo z [] = z
 lgo z (x:xs) = lgo (z + x) xs

Step 2: Analyze Strictness and Absence

Result: lgo is strict in its both arguments

25

Our Example

mysum :: Double -> Double
mysum n = lgo 0 n
 where
 lgo :: Double -> [Double] -> Double
 lgo z [] = z
 lgo z (x:xs) = lgo (z + x) xs

Step 3: Worker/Wrapper Split

26

Our Example

mysum :: Double -> Double
mysum n = lgo 0 n
 where
 lgo :: Double -> [Double] -> Double
 lgo z xs = case z of D# d -> $wlgo d xs

 $wlgo :: Double# -> [Double] -> Double
 $wlgo d [] = D# d
 $wlgo d (x:xs) = lgo ((D# d) + x) xs

$wlgo takes unboxed doubles as an argument.

Step 3: Worker/Wrapper Split

27

Our Example

mysum :: Double -> Double
mysum n = lgo 0 n
 where
 lgo :: Double -> [Double] -> Double
 lgo z xs = case z of D# d -> $wlgo d xs

 $wlgo :: Double# -> [Double] -> Double
 $wlgo d [] = D# d
 $wlgo d (x:xs) = lgo ((D# d) + x) xs

Step 4: Inline lgo in the Worker

28

Our Example

mysum :: Double -> Double
mysum n = lgo 0 n
 where
 lgo :: Double -> [Double] -> Double
 lgo z xs = case z of D# d -> $wlgo d xs

 $wlgo :: Double# -> [Double] -> Double
 $wlgo d [] = D# d
 $wlgo d (x:xs)
 = case ((D# d) + x) of D# d' -> $wlgo d' xs

Step 4: Inline lgo in the Worker

• lgo is invoked just once;

• No intermediate thunks for d is constructed.

29

A Brief Look
at GHC’s Guts

30

GHC Compilation Pipeline

• Haskell Source

• Core

• Spineless Tagless G-Machine

• C--

• C / Machine Code / LLVM Code

A number of Intermediate Languages

Most of interesting optimizations
happen here

31

32

GHC Core

• A tiny language, to which Haskell sources are de-sugared;

• Based on explicitly typed System F with type equality
coercions;

• Used as a base platform for analyses and optimizations;

• All names are fully-qualified;

• if-then-else is compiled to case-expressions;

• Variables have additional metadata;

• Type class constraints are compiled into record parameters.

33

Core Syntax

data Expr b
 = Var! Id
 | Lit Literal
 | App (Expr b) (Expr b)
 | Lam b (Expr b)
 | Let (Bind b) (Expr b)
 | Case (Expr b) b Type [Alt b]!
 | Cast (Expr b) Coercion
 | Tick (Tickish Id) (Expr b)
 | Type Type
 | Coercion Coercion

data Bind b = NonRec b (Expr b)
! | Rec [(b, (Expr b))]

type Alt b = (AltCon, [b], Expr b)

data AltCon
 = DataAlt DataCon
 | LitAlt Literal
 | DEFAULT

34

Core Output (Demo)

•A factorial function

•mysum

35

How to Get Core

> ghc -ddump-ds Sum.hs

Desugared Core

> ghc -ddump-stranal Sum.hs

Core with Strictness Annotations

> ghc -ddump-worker-wrapper Sum.hs

Core after Worker/Wrapper Split

More at http://www.haskell.org/ghc/docs/2.10/users_guide/user_41.html

36

http://www.haskell.org/ghc/docs/2.10/users_guide/user_41.html
http://www.haskell.org/ghc/docs/2.10/users_guide/user_41.html

Strictness and Absence
Analyses

in a Nutshell

37

Two Types
of Modular Program Analyses

• Forward analysis

• “Run” the program with abstract input and infer the abstract
result;

• Examples: sign analysis, interval analysis, type checking/
inference.

• Backwards analysis

• From the expected abstract result of the program infer the
abstract values of its inputs.

38

Strictness from the definition
as a forward analysis

f ? = ?
A function with multiple parameters

f x y z = . . .

(f ? > >), (f > ? >), (f > > ?)

What if there are nested, recursive definitions?

39

Strictness as a backwards analysis
(Informally)

f x y z = . . .

If the result of applied to some arguments
is going to be evaluated to WHNF,

what can we say about its parameters?

f

Backwards analysis provides this contextual information.

40

Defining the Contexts (formally)

Denotational Semantics

• Answers the question what a program is;

• Introduced by Dana Scott and Christopher Strachey to reason
about imperative programs as state transformers;

• The effect of program execution is modeled by relating a
program to a mathematical function;

• Main purpose: constructing different domains for program
interpretation and analysis;

• Secondary purpose: introducing ordering on program objects.

41

Simple Denotational Semantics of Core

Definition
Domain - a set of meanings for different programs

What is the meaning of undefined
or a non-terminating program?

JundefinedK = ?
Jf x = f xK = ?

? - “bottom”

42

Simple Denotational Semantics of Core

? is the least defined element in our domain

Once evaluated, it terminates the program

Simple Denotational Semantics of Core

Adding bottom to a set of values is called lifting

Example: Z?
. . . � 2 � 1 0 1 2 . . .

?
43

Simple Denotational Semantics of CoreSimple Denotational Semantics of Core

. . . � 2 � 1 0 1 2 . . .

?

Should be interpreted as

. . .? v �2,? v �1,? v 0,? v 1, . . .

Denotational semantics of a literal is itself

J1K = 1

44

Elements of Domain Theory

Partial order v
x v y - is “less defined than”

x y

• reflexive:

• transitive:

• antisymmetric:

8x x v x

if x v y and y v z then x v z

if x v y and y v x then x = y

Least upper bound z = x t y

x v z

y v z
x v z

0 and y v z

0 =) z v z

0

45

Simple Denotational Semantics of CoreSimple Denotational Semantics of Core

Algebraic Data Types

data Maybe a = Nothing | Just a

Nothing Just ?

?

Just (Just ?) Just 2

46

Simple Denotational Semantics of CoreSimple Denotational Semantics of Core

Monotone functions

f is monotone i↵ x v y () f x v f y

Denotational semantics of first-order Core functions -
monotone functions on the lifted domain of values.

Complete domain for denotational semantics of Core
is defined recursively.

47

Simple Denotational Semantics of CoreSimple Denotational Semantics of Core

Monotone functions as domain elements

f x =

⇢
1 if x = 0

? otherwise

g x =

8
<

:

1 if x = 0

2 if x = 1

? otherwise

Functions are compared point-wise: f v g

Recursive definitions are computed as successive
chains of increasingly more defined functions.

48

Projections: Defining Usage Contexts

Definition:
A monotone function is a projection if for every object p d

p d v d

p(p d) = p d

Shrinking

Idempotent

In point-free style

p v ID
p � p = p

49

Intuition behind Projections

• Projections remove information from objects;

• Projections is a way to describe which parts of an
object are essential for the computation;

• Projection will be used as a synonym to context.

Examples

- a projection if is monotoneg

ID = �x.x

BOT = �x.?
F1 = �(x, y).(?, y)
F2 = �g.�p.g(F1 p)

50

More Facts about Projections

Theorem:

Lemma:

If P is a set of projections then

tP exists and is a projection.

Let p1 and p2 be projections.

Then p1 v p2 =) p1 � p2 = p1.

51

Let p, q be projections, then

(p, q)f =

⇢
(p d1, q d2) if f is a pair and f = (d1, d2)

? otherwise

These are projections, too.

Higher-Order Projections

(q ! p)f =

⇢
p � f � q if f is a function

? otherwise

52

Modeling Usage with Projections

What does it mean “f is not using its argument”?

f = �x. . . .

f z = f ?

or

What happens
to the result

What happens
to the argument

(ID ! ID)f = (BOT ! ID)f

53

Modeling Usage with Projections

| {z }
p

| {z }
p

| {z }
q

m

m
p f = p (q f)

q is a safe projection in the context of p

(ID ! ID)f = (BOT ! ID)f

(ID ! ID)f = (ID ! ID)((BOT ! ID)f)

54

Safety Condition for Projections

p f = p (q f)

p defines a context, i.e., how we are going to use a value;

defines, how much information we can remove
from the object, so it won’t change from p’s perspective.

q

The goal of a backwards absence/strictness analysis -
to find a safe projection for a given value and a context

• The context: how the result of the function
is going to be used;

• The output: how arguments can be safely changed.

55

Safe Usage Projections: Example
p f = p (q f)

f :: (Int, Int, Int) -> [a] -> (Int, Bool)
f (a, b, c) = case a of
 0 -> error "urk"
 _ -> \y -> case b of
 0 -> (c, null y)
 _ -> (c, False)

p q
ID ! ID ID ! ID

ID ! ID ! (BOT , ID) (ID , ID ,BOT)! ID ! ID

ID ! ID ! (ID ,BOT) ID ! BOT ! ID

56

What about Strictness?

Unfortunately, it is to weak for the strictness property.

Usage context is modeled by the identity projection.

The problem:

A solution:

• ID treats ⊥ as any other value;

• It is not helpful to establish a context for detecting f ⊥ = ⊥.

• Introduce a specific element in the domain for “true divergence”;

• Devise a specific projection that maps ⊥ to the true divergence.

57

Extending the Domain for True Divergence

 - lightning bolt

8f f =

?

58

Modeling Strictness with Projections
S =
S ? =
S x = x, otherwise

Checking if the function f uses its argument strictly

S � f = S � f � S

Indeed,

(S � f) ? = (S � f � S) ?
S (f ?) = S (f (S ?))
S (f ?) = S (f)
S (f ?) = S
S (f ?) =

f ? = ?

=)
=)
=)
=)
=)

59

Conservative Nature of the Analysis

• From the backwards perspective each function is a
“projection transformer”: it transforms a result context to a
safe projection (not always the best one);

• The set of all safe projections of a function is incomputable,
as it requires examining all contexts;

• Instead, the optimal “threshold” result projection is chosen.

v

vp1 p2 p3

q2

q1

q⇤

p⇤

ID

60

How to screw the Strictness Analysis

fact :: Int -> Int
fact n = if n == 0
 then n
 else n * (fact $ n - 1)

Let’s take a look on the strictness signatures (demo)

Conclusion
Polymorphism and type classes introduce implicit calls
to non-strict functions and constructors, which make it
harder to infer strictness.

61

Forward Analysis Example

Constructed Product Result
Analysis

Defines if a function can profitably return
multiple results in registers.

62

Example and Motivation

dm :: Int -> Int -> (Int, Int)
dm x y = (x `div` y, x `mod` y)

We would like to express that
dm can return its result pair unboxed.

Unboxed tuples are built-in types in GHC.

The calling convention for a function
that returns an unboxed tuple

arranges to return the components on registers.

63

Worker/Wrapper Split to the Rescue

dm :: Int -> Int -> (Int, Int)
dm x y = (x `div` y, x `mod` y)
dm :: Int -> Int -> (Int, Int)
dm x y = case $wdm x y of
 (# r1, r2 #) -> (r1, r2)

$wdm :: Int -> Int -> (# Int, Int #)
$wdm x y = (# x `div` y, x `mod` y #)

• The worker does actually all the job;

• The wrapper serves as an impedance
matcher;

64

The Essence of the Transformation

case dm x y of
 (p, q) -> e

case (case $wdm x y of
 (# r1, r2 #) -> (r1, r2)) of
 (p, q) -> e

case $wdm x y of
 (# p, q #) -> e

If the result of the worker is scrutinized immediately...

Inline the worker

The tuple is returned unboxed

The result pair construction has been moved
from the body of dm to its call site.

65

General CPR Worker/Wrapper Split

f :: Int -> (Int, Int)
f x = e

f :: Int -> (Int, Int)
f x = case $wf x of
 (# r1, r2 #) -> (r1, r2)

$wf :: Int -> (# Int, Int #)
$wf = case e of
 (r1, r2) -> (# r1, r2 #)

An arbitrary function returning a product

The wrapper

The worker

66

When is the W/W Split Beneficial?

f :: Int -> (Int, Int)
f x = case $wf x of
 (# r1, r2 #) -> (r1, r2)

$wf :: Int -> (# Int, Int #)
$wf = case e of
 (r1, r2) -> (# r1, r2 #)

• The worker takes the pair apart;

• The wrapper reconstructs it again.

The insight
Things are getting worse unless the case expression in $wf
is certain to cancel with the construction of the pair in e.

67

When is the W/W Split Beneficial?

We should only perform the CPR W/W transformation
if the result of the function is allocated by the function itself.

Definition:
A function has the CPR (constructed product result) property,
if it allocates its result product itself.

The goal of the CPR analysis is to infer this property.

68

CPR Analysis Informally

• The analysis is modular: it’s based on the function
definition only, but not its uses;

• Implemented in the form of an augmented type
system, which tracks explicit product constructions;

• Forwards analysis: assumes all arguments are
non-explicitly constructed products.

69

Examples

f :: Int -> (Int, Int)
f x y = if x <= y
 then (x, y)
 else f (x - 1) (y + 1)

Has CPR property

g :: Int -> (Int, Int)
f x y = if x <= y
 then (x, y)
 else genRange x

Does not have CPR property

CPR property in Core metadata: demo

is CPR

depends on CPR(f)

external function

70

A program that benefits from CPR

tak :: Int -> Int -> Int -> Int

tak x y z = if not(y < x) then z
 else tak (tak (x-1) y z)
! ! (tak (y-1) z x)
 ! (tak (z-1) x y)

main = do
! [xs,ys,zs] <- getArgs
! print (tak (read xs) (read ys) (read zs))

• Taken from the nofib benchmark suite

• A result from tak is consumed by itself,
so both parts of the worker collapse

• Memory consumption gain: 99.5%

71

nofib: Strictness + Absence + CPR
--
 Program Size Allocs Runtime

--
 ansi -1.3% -12.1% 0.00
 banner -1.4% -18.7% 0.00
 boyer2 -1.3% -31.8% 0.00
 clausify -1.3% -35.0% 0.03
 comp_lab_zift -1.3% +0.2% +0.0%
 compress2 -1.4% -32.7% +1.4%
 cse -1.4% -15.8% 0.00
 mandel2 -1.4% -28.0% 0.00
 puzzle -1.3% +16.5% 0.16
 rfib -1.4% -99.7% 0.02
 x2n1 -1.2% -81.2% 0.01

... and 90 more ...
--
 Min -1.5% -95.0% -16.2%
 Max -0.7% +16.5% +3.2%
 Geometric Mean -1.3% -16.9% -3.3%

72

Conclusion
• Lazy programs allocate a lot of thunks;

it might cause performance problems due to a big chunk of GC work;

• Allocating thunks can be avoided by changing call/return contract
of a function;

• Worker/Wrapper transformation is a cheap way to enforce argument
unboxing/evaluation;

• We need Strictness and Absence analysis so the W/W split would not
change a program semantics;

• We need CPR analysis so CPR W/W split would be beneficial;

• There are two types of analyses: forward and backwards;
Strictness and Absence are backwards ones, CPR is a forward analysis;

• Projections are a convenient way to model contexts
in a backwards analysis.

Thanks
73

References
• Profiling and optimization

• B. O’Sullivan et al. Real World Haskell, Chapter 25

• E. Z. Yang. Anatomy of a Thunk Leak
http://blog.ezyang.com/2011/05/anatomy-of-a-thunk-leak/

The Haskell Heap
http://blog.ezyang.com/2011/04/the-haskell-heap/

• Strictness and CPR Analyses

• http://hackage.haskell.org/trac/ghc/wiki/Commentary/Compiler/Demand

• http://www.haskell.org/haskellwiki/Lazy_vs._non-strict

• C. Baker-Finch et al. Constructed Product Result Analysis for Haskell

• Denotational Semantics and Projections

• G. Winskel. Formal Semantics of Programming Languages

• P. Wadler, R. J. M. Hughes. Projections for strictness analysis.

74

http://blog.ezyang.com/2011/05/anatomy-of-a-thunk-leak/
http://blog.ezyang.com/2011/05/anatomy-of-a-thunk-leak/
http://blog.ezyang.com/2011/04/the-haskell-heap/
http://blog.ezyang.com/2011/04/the-haskell-heap/
http://www.haskell.org/haskellwiki/Lazy_vs._non-strict
http://www.haskell.org/haskellwiki/Lazy_vs._non-strict
http://www.haskell.org/haskellwiki/Lazy_vs._non-strict
http://www.haskell.org/haskellwiki/Lazy_vs._non-strict

