Static Analysis and Code Optimizations in Glasgow Haskell Compiler

Ilya Sergey

ilya.sergey@gmail.com
12.12.12

The Goal

Discuss what happens when we run

ghc -O MyProgram.hs

The Plan

- Recall how laziness is implemented in GHC and what drawbacks it might cause;
- Introduce the worker/wrapper transformation an optimization technique implemented in GHC;
- Realize why we need static analysis to do the transformations;
- Take a brief look at the GHC compilation pipeline and the Core language;
- Meet two types of static analysis: forward and backwards;
- Recall some basics of denotational semantics and take a look at the mathematical basics of some analyses in GHC;
- Introduce and motivate the CPR analysis.

Why Laziness Might be Harmful

 andHow the Harm Can Be Reduced

```
module Main where
import System.Environment
import Text.Printf
main = do
    [n] <- map read `fmap` getArgs
    printf "%f\n" (mysum n)
mysum :: Double -> Double
mysum n = myfoldl (+) 0 [1..n]
myfoldl :: (a -> b -> a) -> a -> [b] -> a
myfoldl f z0 xs0 = lgo z0 xs0
    where
        lgo z [] = z
        lgo z (x:xs) = lgo (f z x) xs
```


Compile and run

```
> ghc --make -RTS -rtsopts Sum.hs
> time ./Sum le6 +RTS -K100M
500000500000.0
real 0m0.583s
user 0m0.509s
sys 0m0.068s
```


Compile optimized and run

```
> ghc --make -fforce-recomp -RTS -rtsopts -O Sum.hs
> time ./Sum le6
500000500000.0
real 0m0.153s
user 0m0.101s
sys 0m0.011s
```


Collecting Runtime Statistics

Profiling results for the non-optimized program

```
> ghc --make -RTS -rtsopts -fforce-recomp Sum.hs
> ./Sum 1e6 +RTS -sstderr -K100M
```


Collecting Runtime Statistics

Profiling results for the optimized program

```
> ghc --make -RTS -rtsopts -fforce-recomp -O Sum.hs
> ./Sum le6 +RTS -sstderr -K100M
```

92,082,480 bytes allocated in the heap 30,160 bytes copied during GC 1 MB total memory in use			
INIT	time	0.00 s	0.00s elapsed)
MUT	time	0.07 s	0.08 s elapsed)
GC	time	0.00 s	0.00 s elapsed)
EXIT	time	0.00 s	0.00 s elapsed)
Total	time	0.07 s	0.08 s elapsed)
\%GC	time	1.1	(1.4\% elapsed)

Time Profiling

Profiling results for the non-optimized program

```
> ghc --make -RTS -rtsopts -prof -fforce-recomp Sum.hs
> ./Sum 1e6 +RTS -p -K100M
```

total time $=$		0.24 secs
total alloc $=$	$124,080,472$ bytes	
COST CENTRE MODULE	\%time $\%$ alloc	
mysum	Main	52.7
myfoldl.lgo	Main	43.6
myfoldl	Main	3.7

Time Profiling

Profiling results for the optimized program

> ghc --make -RTS -rtsopts -prof -fforce-recomp -O Sum.hs
>./Sum 1e6 +RTS -p -K100M

\[

\]

Memory Profiling

Profiling results for the non-optimized program

```
> ghc --make -RTS -rtsopts -prof -fforce-recomp Sum.hs
> ./Sum le6 +RTS -hy -p -K100M
> hp2ps -e8in -c Sum.hp
```


Memory Profiling

Profiling results for the optimized program

```
> ghc --make -RTS -rtsopts -prof -fforce-recomp -O Sum.hs
> ./Sum le6 +RTS -hy -p -K100M
> hp2ps -e8in -c Sum.hp
```


The Problem

Too Many Allocation of Double objects

The cause:

Too many thunks allocated for lazily computed values

```
mysum :: Double -> Double
mysum n = myfoldl (+) 0 [1..n]
myfoldl :: (a -> b -> a) -> a -> [b] -> a
myfoldl f z0 xs0 = lgo z0 xs0
    where
        lgo z [] = z
        lgo z (x:xs) = lgo (f z x) xs
```

In our example the computation of Double values is delayed by the calls to lgo.

Intermezzo

Call-by-Value

Arguments of a function call are fully evaluated before the invocation.

Call-by-Need

Thunk (Urban Dictionary):
To sneak up on someone and bean him with a heavy blow to the back of the head.
"Jim got thunked going home last night. Serves him right for walking in a dark alley with all his paycheck in his pocket."

How to thunk a thunk

- Apply its delayed value as a function;
- Examine its value in a case-expression.

```
case p of
    (a, b) -> f a b
```

p will be evaluated to the weak-head normal form, sufficient to examine whether it is a pair.

However, its components will remain unevaluated (i.e., thunks).
Remark:
Only evaluation of boxed values can be delayed via thunks.

Our Example from CBN's Perspective

```
mysum :: Double -> Double
mysum n = myfoldl (+) 0 [1..n]
myfoldl :: (a -> b -> a) -> a -> [b] -> a
myfoldl f z0 xs0 = lgo z0 xs0
    where
        lgo z [] = z
    lgo z (x:xs) = lgo (f z x) xs
```

```
        mysum 3
\Longrightarrowmyfoldl (+) 0 (1:2:3:[])
"lgo z1 (1:2:3:[])
"lgo z2 (2:3:[])
"lgo z3 (3:[])
"lgo z4 []
```

$z 1->$	
$z 2->$	$1+!z 1$
$z 3->$	$2+!z 2$
$z 4->$	$3+!z 3$

$\Longrightarrow!\mathrm{z} 4$

Now GC can do the job...

Getting Rid of Redundant Thunks

Obvious Solution:
Replace CBN by CBV, so no need in thunk.
Obvious Problem:
The semantics of a "lazy" program can change unpredictably.

```
f x e = if x > 0
    then x + 1
    else e
f 5 (error "Urk")
```


Getting Rid of Redundant Thunks

Let's reformulate:

Replace CBN by CBV only for strict functions, i.e., those that always evaluate their argument to the WHNF.

```
f x e = if x > 0
    then x + 1
    else e
f 5 (error "Urk")
```

- f is strict in x
- f is non-strict (lazy) in e

A Convenient Definition of Strictness

Definition:

A function f of one argument is strict iff

$$
\text { f undefined }=\text { undefined }
$$

Strictness is formulated similarly for functions of multiple arguments.

```
f x e = if x > 0
    then x + 1
    else e
f 5 (error "Urk")
```


Enforcing CBV for Function Calls

Worker/Wrapper Transformation

Splitting a function into two parts

```
f :: (Int, Int) -> Int
f p = e
```

\Downarrow

```
f :: (Int, Int) -> Int
f p = case p of (a,b) -> $wf a b
$wf :: Int -> Int -> Int
$wf a b = let p = (a, b) in e
```

- The worker does all the job, but takes unboxed;
- The wrapper serves as an impedance matcher and inlined at every call site.

Some Redundant Job Done?

```
f :: (Int, Int) -> Int
f p = case p of (a, b) -> $wf a b
$wf :: Int -> Int -> Int
$wf a b = let p = (a, b) in e
```

- f takes the pair apart and passes components to \$wf;
- $\$ w f$ construct the pair again.

Strictness to the Rescue

A strict function always examines its parameter.
So, we just rely on a smart rewriter of case-expressions.

```
f :: (Int, Int) -> Int
f p = (case p of (a, b) -> a) + 1
    |
```

```
f :: (Int, Int) -> Int
```

f :: (Int, Int) -> Int
f p = case p of (a,b) -> \$wf a
f p = case p of (a,b) -> \$wf a
\$Wf :: Int -> Int
\$Wf :: Int -> Int
\$Wf a = let p = (a, error "Urk"))

```
$Wf a = let p = (a, error "Urk"))
```


Strictness to the Rescue

A strict function always examines its parameter.
So, we just rely on a smart rewriter of case-expressions.

```
f :: (Int, Int) -> Int
f p = (case p of (a,b) -> a) + 1
    |
f :: (Int, Int) -> Int
f p = case p of (a,b) -> $wf a
$wf :: Int -> Int
$wf a = a + 1
```


Our Example

Step I:Inline myfoldl

```
mysum :: Double -> Double
mysum n = myfoldl (+) 0 [1..n]
myfoldl :: (a -> b -> a) -> a -> [b] -> a
myfoldl f z0 xs0 = lgo z0 xs0
    where
        lgo z [] = z
        lgo z (x:xs) = lgo (f z x) xs
```


Our Example

Step 2: Analyze Strictness and Absence

```
mysum :: Double -> Double
mysum n = lgo 0 n
    where
        lgo :: Double -> [Double] -> Double
        lgo z [] = z
        lgo z (x:xs) = lgo (z + x) xs
```

Result: lgo is strict in its both arguments

Our Example

Step 3: Worker/Wrapper Split

```
mysum :: Double -> Double
mysum n = lgo 0 n
    where
        lgo :: Double -> [Double] -> Double
        lgo z [] = z
        lgo z (x:xs) = lgo (z + x) xs
```


Our Example

Step 3: Worker/Wrapper Split

```
mysum :: Double -> Double
mysum n = lgo 0 n
    where
    lgo :: Double -> [Double] -> Double
    lgo z xs = case z of D# d -> $wlgo d xs
    $wlgo :: Double# -> [Double] -> Double
    $wlgo d [] = D# d
    $wlgo d (x:xs) = lgo ((D# d) + x) xs
```

\$wlgo takes unboxed doubles as an argument.

Our Example

Step 4: Inline loo in the Worker

```
mysum :: Double -> Double
mysum n = lgo 0 n
    where
    lgo :: Double -> [Double] -> Double
    lgo z xs = case z of D# d -> $wlgo d xs
    $wlgo :: Double# -> [Double] -> Double
    $wlgo d [] = D# d
    $wlgo d (x:xs) = lgo ((D# d) + x) xs
```


Our Example

Step 4: Inline lgo in the Worker

```
mysum :: Double -> Double
mysum n = lgo 0 n
    where
    lgo :: Double -> [Double] -> Double
    lgo z xs = case z of D# d -> $wlgo d xs
    $wlgo :: Double# -> [Double] -> Double
    $wlgo d [] = D# d
    $wlgo d (x:xs)
        = case ((D# d) + x) of D# d' -> $wlgo d' xs
```

- lgo is invoked just once;
- No intermediate thunks for d is constructed.

A Brief Look at GHC's Guts

GHC Compilation Pipeline

A number of Intermediate Languages

- Haskell Source
- Core
- Spineless Tagless G-Machine
- C--
- C / Machine Code / LLVM Code

Most of interesting optimizations happen here

GHC Core

- A tiny language, to which Haskell sources are de-sugared;
- Based on explicitly typed System F with type equality coercions;
- Used as a base platform for analyses and optimizations;
- All names are fully-qualified;
- if-then-else is compiled to case-expressions;
- Variables have additional metadata;
- Type class constraints are compiled into record parameters.

Core Syntax

```
data Expr b
    = Var Id
    Lit Literal
    App (Expr b) (Expr b)
    Lam b (Expr b)
    Let (Bind b) (Expr b)
    Case (Expr b) b Type [Alt b]
    Cast (Expr b) Coercion
    Tick (Tickish Id) (Expr b)
    Type Type
    Coercion Coercion
data Bind b = NonRec b (Expr b)
    | Rec [(b, (Expr b))]
type Alt b = (AltCon, [b], Expr b)
data AltCon
    = DataAlt DataCon
    LitAlt Literal
    DEFAULT
```


Core Output (Demo)

- A factorial function
- mysum

How to Get Core

Desugared Core

> ghc -ddump-ds Sum.hs

Core with Strictness Annotations
> ghc -ddump-stranal Sum.hs

Core after Worker/Wrapper Split

> ghc -ddump-worker-wrapper Sum.hs

Strictness and Absence Analyses in a Nutshell

Two Types

of Modular Program Analyses

- Forward analysis
- "Run" the program with abstract input and infer the abstract result;
- Examples: sign analysis, interval analysis, type checking/ inference.
- Backwards analysis
- From the expected abstract result of the program infer the abstract values of its inputs.

Strictness from the definition as a forward analysis

$$
f \perp=\perp
$$

A function with multiple parameters

$$
\begin{gathered}
f x y z=\ldots \\
(f \perp \top \top),(f \top \perp \top),(f \top \top \perp)
\end{gathered}
$$

What if there are nested, recursive definitions?

Strictness as a backwards analysis (Informally)

$$
f x y z=\ldots
$$

If the result of f applied to some arguments is going to be evaluated to WHNF, what can we say about its parameters?

Backwards analysis provides this contextual information.

Defining the Contexts (formally)

Denotational Semantics

- Answers the question what a program is;
- Introduced by Dana Scott and Christopher Strachey to reason about imperative programs as state transformers;
- The effect of program execution is modeled by relating a program to a mathematical function;
- Main purpose: constructing different domains for program interpretation and analysis;
- Secondary purpose: introducing ordering on program objects.

Simple Denotational Semantics of Core

Definition

Domain - a set of meanings for different programs
What is the meaning of undefined or a non-terminating program?

$$
\perp \text { - "bottom" }
$$

$$
\begin{aligned}
& \llbracket \text { undefined }=\perp \\
& \llbracket \mathrm{f} \mathrm{x}=\mathrm{f} \mathrm{x} \rrbracket=\perp
\end{aligned}
$$

Simple Denotational Semantics of Core

\perp is the least defined element in our domain
Once evaluated, it terminates the program
Adding bottom to a set of values is called lifting

Example: \mathbb{Z}_{\perp}

Simple Denotational Semantics of Core

Denotational semantics of a literal is itself

$$
\llbracket 1 \rrbracket=1
$$

Should be interpreted as
$\ldots \perp \sqsubseteq-2, \perp \sqsubseteq-1, \perp \sqsubseteq 0, \perp \sqsubseteq 1, \ldots$

Elements of Domain Theory

Partial order \sqsubseteq

$x \sqsubseteq y \quad-x$ is "less defined than" y

- reflexive: $\forall x \quad x \sqsubseteq x$
- transitive: if $x \sqsubseteq y$ and $y \sqsubseteq z$ then $x \sqsubseteq z$
- antisymmetric: if $x \sqsubseteq y$ and $y \sqsubseteq x$ then $x=y$

Least upper bound $z=x \sqcup y$

$$
\begin{aligned}
& x \sqsubseteq z \\
& y \sqsubseteq z \\
& x \sqsubseteq z^{\prime} \text { and } y \sqsubseteq z^{\prime} \Longrightarrow z \sqsubseteq z^{\prime}
\end{aligned}
$$

Simple Denotational Semantics of Core

Algebraic Data Types
data Maybe a = Nothing | Just a

Simple Denotational Semantics of Core

Monotone functions

$$
f \text { is monotone iff } x \sqsubseteq y \Longleftrightarrow f x \sqsubseteq f y
$$

Denotational semantics of first-order Core functions monotone functions on the lifted domain of values.

Complete domain for denotational semantics of Core is defined recursively.

Simple Denotational Semantics of Core

Monotone functions as domain elements
$f x=\left\{\begin{array}{ll}1 & \text { if } x=0 \\ \perp & \text { otherwise }\end{array} \quad g x= \begin{cases}1 & \text { if } x=0 \\ 2 & \text { if } x=1 \\ \perp & \text { otherwise }\end{cases}\right.$

Functions are compared point-wise: $\quad f \sqsubseteq g$

Recursive definitions are computed as successive chains of increasingly more defined functions.

Projections: Defining Usage Contexts

Definition:

A monotone function p is a projection if for every object d

$$
\begin{aligned}
p d & \sqsubseteq d & & \text { Shrinking } \\
p(p d) & =p d & & \text { Idempotent }
\end{aligned}
$$

In point-free style

$$
\begin{aligned}
p & \sqsubseteq I D \\
p \circ p & =p
\end{aligned}
$$

Intuition behind Projections

- Projections remove information from objects;
- Projections is a way to describe which parts of an object are essential for the computation;
- Projection will be used as a synonym to context.

Examples

$$
\begin{aligned}
& I D=\lambda x \cdot x \\
& B O T=\lambda x \cdot \perp \\
& F_{1}=\lambda(x, y) \cdot(\perp, y) \\
& F_{2}=\lambda g \cdot \lambda p \cdot g\left(F_{1} p\right)-\text { a projection if } g \text { is monotone }
\end{aligned}
$$

More Facts about Projections

Theorem:

If P is a set of projections then
$\sqcup P$ exists and is a projection.

Lemma:

Let p_{1} and p_{2} be projections.
Then $p_{1} \sqsubseteq p_{2} \Longrightarrow p_{1} \circ p_{2}=p_{1}$.

Higher-Order Projections

Let p, q be projections, then

$$
\begin{aligned}
& (q \rightarrow p) f= \begin{cases}p \circ f \circ q & \text { if } f \text { is a function } \\
\perp & \text { otherwise }\end{cases} \\
& (p, q) f= \begin{cases}\left(p d_{1}, q d_{2}\right) & \text { if } f \text { is a pair and } f=\left(d_{1}, d_{2}\right) \\
\perp & \text { otherwise }\end{cases}
\end{aligned}
$$

These are projections, too.

Modeling Usage with Projections

$$
f=\lambda x \ldots
$$

What does it mean " f is not using its argument"?

Modeling Usage with Projections

\[

\]

q is a safe projection in the context of p

Safety Condition for Projections

$$
p f=p(q f)
$$

p defines a context, i.e., how we are going to use a value;
q defines, how much information we can remove from the object, so it won't change from p 's perspective.

The goal of a backwards absence/strictness analysis to find a safe projection for a given value and a context

- The context: how the result of the function is going to be used;
- The output: how arguments can be safely changed.

Safe Usage Projections: Example

$$
p f=p(q f)
$$

```
f :: (Int, Int, Int) -> [a] -> (Int, Bool)
f (a, b, c) = case a of
    0 -> error "urk"
    _ -> \y -> case b of
        0 -> (c, null y)
                        -> (c, False)
```

p	q
$I D \rightarrow I D$	$I D \rightarrow I D$
$I D \rightarrow I D \rightarrow(B O T, I D)$	$(I D, I D, B O T) \rightarrow I D \rightarrow I D$
$I D \rightarrow I D \rightarrow(I D, B O T)$	$I D \rightarrow B O T \rightarrow I D$

What about Strictness?

Usage context is modeled by the identity projection.
Unfortunately, it is to weak for the strictness property.
The problem:

- $I D$ treats \perp as any other value;
- It is not helpful to establish a context for detecting $f \perp=\perp$.

A solution:

- Introduce a specific element in the domain for "true divergence";
- Devise a specific projection that maps \perp to the true divergence.

Extending the Domain for True Divergence

χ - lightning bolt

$$
\forall f f z=z
$$

Modeling Strictness with Projections

$$
\begin{aligned}
S \& & =z \\
S \perp & =z \\
S x & =x, \text { otherwise }
\end{aligned}
$$

Checking if the function f uses its argument strictly

$$
S \circ f=S \circ f \circ S
$$

Indeed，

$$
\begin{aligned}
& (S \circ f) \perp=(S \circ f \circ S) \perp \\
& \Longrightarrow \quad S(f \perp)=S(f(S \perp)) \\
& \Longrightarrow \quad S(f \perp)=S(f \text { 亿 }) \\
& \Longrightarrow \quad S(f \perp)=S \text { 亿 } \\
& \begin{array}{l}
\Longrightarrow \\
\Longrightarrow
\end{array} \\
& S(f \perp)=\text { 々 } \\
& f \perp=\perp
\end{aligned}
$$

Conservative Nature of the Analysis

- From the backwards perspective each function is a "projection transformer": it transforms a result context to a safe projection (not always the best one);
- The set of all safe projections of a function is incomputable, as it requires examining all contexts;
- Instead, the optimal "threshold" result projection is chosen.

How to screw the Strictness Analysis

```
fact :: Int -> Int
fact n = if n == 0
    then n
    else n * (fact $ n - 1)
```

Let's take a look on the strictness signatures (demo)

Conclusion

Polymorphism and type classes introduce implicit calls to non-strict functions and constructors, which make it harder to infer strictness.

Forward Analysis Example

Constructed Product Result Analysis

Defines if a function can profitably return multiple results in registers.

Example and Motivation

```
dm :: Int -> Int -> (Int, Int)
dm x y = (x `div` y, x `mod` y)
```

We would like to express that dm can return its result pair unboxed.

Unboxed tuples are built-in types in GHC.

The calling convention for a function that returns an unboxed tuple arranges to return the components on registers.

Worker/Wrapper Split to the Rescue

```
dm :: Int -> Int -> (Int, Int)
dm x y = case $wdm x y of
    (# r1, r2 #) -> (r1, r2)
```

```
$wdm :: Int -> Int -> (# Int, Int #)
$wdm x y = (# x `div` y, x `mod` y #)
```

- The worker does actually all the job;
- The wrapper serves as an impedance matcher;

The Essence of the Transformation

If the result of the worker is scrutinized immediately...

```
case dm x y of
    (p, q) -> e
```

Inline the worker

```
case (case $wdm x y of
    (# r1, r2 #) -> (r1, r2)) of
    (p, q) -> e
```

The tuple is returned unboxed

```
case $wdm x y of
    (# p, q #) -> e
```

The result pair construction has been moved from the body of dm to its call site.

General CPR Worker/Wrapper Split

An arbitrary function returning a product

```
f :: Int -> (Int, Int)
f x = e
```

The wrapper

```
f :: Int -> (Int, Int)
f x = case $wf x of
    (# r1, r2 #) -> (r1, r2)
```

The worker

```
$wf :: Int -> (# Int, Int #)
$wf = case e of
    (r1, r2) -> (# r1, r2 #)
```


When is the W/W Split Beneficial?

```
f :: Int -> (Int, Int)
f x = case $wf x of
    (# r1, r2 #) -> (r1, r2)
$wf :: Int -> (# Int, Int #)
$wf = case e of
    (r1, r2) -> (# r1, r2 #)
```

- The worker takes the pair apart;
- The wrapper reconstructs it again.

The insight

Things are getting worse unless the case expression in \$wf is certain to cancel with the construction of the pair in e.

When is the W/W Split Beneficial?

We should only perform the CPR W/W transformation if the result of the function is allocated by the function itself.

Definition:

A function has the CPR (constructed product result) property, if it allocates its result product itself.

The goal of the CPR analysis is to infer this property.

CPR Analysis Informally

- The analysis is modular: it's based on the function definition only, but not its uses;
- Implemented in the form of an augmented type system, which tracks explicit product constructions;
- Forwards analysis: assumes all arguments are non-explicitly constructed products.

Examples

Has CPR property is CPR

```
f :: Int -> (Int, Int)
f x y = if x <= y
    then (x, Y)
    else f (x - 1) (y + 1)
    depends on CPR(f)
```

Does not have CPR property

```
g :: Int -> (Int, Int)
f x y = if x <= y
    then (x, y)
    else genRange x
external function
```

CPR property in Core metadata: demo

A program that benefits from CPR

```
tak :: Int -> Int -> Int -> Int
tak x y z = if not(y< x) then z
    else tak (tak (x-1) y z)
    (tak (y-1) z x)
    (tak (z-1) x y)
main = do
    [xs,ys,zs] <- getArgs
    print (tak (read xs) (read ys) (read zs))
```

- Taken from the nofib benchmark suite
- A result from tak is consumed by itself, so both parts of the worker collapse
- Memory consumption gain: 99.5\%

nofib: Strictness + Absence + CPR

Program	Size	Allocs	Runtime
ansi	-1.3\%	-12.1\%	0.00
banner	-1.4\%	-18.7\%	0.00
boyer2	-1.3\%	-31.8\%	0.00
clausify	-1.3\%	-35.0\%	0.03
comp_lab_zift	-1.3\%	+0.2\%	+0.0\%
compress2	-1.4\%	-32.7\%	+1.4\%
cse	-1.4\%	-15.8\%	0.00
mandel2	-1.4\%	-28.0\%	0.00
puzzle	-1.3\%	+16.5\%	0.16
rfib	-1.4\%	-99.7\%	0.02
x2n1	-1.2\%	-81.2\%	0.01
... and 90 more ...			
Min	-1.5\%	-95.0\%	-16.2\%
Max	-0.7\%	+16.5\%	+3.2\%
Geometric Mean	-1.3\%	-16.9\%	-3.3\%

Conclusion

- Lazy programs allocate a lot of thunks; it might cause performance problems due to a big chunk of GC work;
- Allocating thunks can be avoided by changing call/return contract of a function;
- Worker/Wrapper transformation is a cheap way to enforce argument unboxing/evaluation;
- We need Strictness and Absence analysis so the W/W split would not change a program semantics;
- We need CPR analysis so CPR W/W split would be beneficial;
- There are two types of analyses: forward and backwards; Strictness and Absence are backwards ones, CPR is a forward analysis;
- Projections are a convenient way to model contexts in a backwards analysis.

References

- Profiling and optimization
- B. O'Sullivan et al. Real World Haskell, Chapter 25
- E. Z. Yang. Anatomy of a Thunk Leak
http://blog.ezyang.com/2011/05/anatomy-of-a-thunk-leak/
The Haskell Heap
http://blog.ezyang.com/2011/04/the-haskell-heap/
- Strictness and CPR Analyses
- http://hackage.haskell.org/trac/ghc/wiki/Commentary/Compiler/Demand
- http://www.haskell.org/haskellwiki/Lazy_vs._non-strict
- C. Baker-Finch et al. Constructed Product Result Analysis for Haskell
- Denotational Semantics and Projections
- G. Winskel. Formal Semantics of Programming Languages
- P. Wadler, R. J. M. Hughes. Projections for strictness analysis.

