
Ilya Sergey
ilyasergey.net

PLMW @ ICFP 2019

Functional Programming is Everywhere

About myself
 2

MSc Saint Petersburg State University, 2008  
PhD KU Leuven, 2008-2012

 
Currently Associate Professor (tenure-track) at Yale-NUS College & NUS  
 
Previously Lecturer → Associate Professor at University College London  
 Postdoc at IMDEA Software Institute  
 Software Engineer at JetBrains

Functional programmer since 2005

 3

Functional programmer since 2005
 4

2005 2006 2007 2008 2010 2011

Functional Languages
 5

 6

The Essence of Functional Languages
• Algebraic Data Types

• Pattern Matching

• Folds

• Continuations and CPS

• Structural Recursion

• Type Classes

• Monads

Check out this year’s ICFP program…

• Higher-order functions and closures

• Types and Type Inference

• Polymorphism

• Laziness

• Point-free style

• Combinator Libraries

• Purely functional data structures

Functional Programming

 7

This Talk

Functional Programming

 8

This Talk

Functional Programming Ideas

 9

This Talk

λ

 10

Functional Programming Ideas in…

Software EngineeringTeaching

Disc
laim

er:

pers
onal

 exp
erie

nce

Research

 11

Functional Programming Ideas in…

Software EngineeringTeachingResearch

Moore’s Law
 12

Clock
speed

flattening
sharply

Transistor
count still

rising

The Multicore Processor
 13

cache

BusBus

shared memory

cachecache
All on the
same chip

Sun
T2000
Niagara

 14

Specifications for
Concurrent Data Structures

 15

Reusable Specifications for
Concurrent Data Structures

 16

My research agenda since 2014

push x{ S = xs } { S′= x :: xs }

pop(){ S = xs }

Suitable for sequential programming

{ res = ⊥ ⋀ S = Nil
 ⋁ ∃x, xs′. res = x ⋀  
 xs = x :: xs′ ⋀ S′ = xs′ }

Abstract Specifications of a Stack

push x{ S = xs } { S′= x :: xs }

pop(){ S = xs } { res = ⊥ ⋀ S = Nil
 ⋁ ∃x, xs′. res = x ⋀  
 xs = x :: xs′ ⋀ S′ = xs′ }

Breaks composition in the presence of thread interference.

Abstract Specifications of a Stack

y := pop();
{ y = ??? }

{ S = Nil }

y := pop();

{ y ∈ {⊥} ∪ {1, 2} }

��������

��������

push 1;

push 2;

{ S = Nil }

y := pop();

{ S = Nil }

{ y ∈ {⊥} ∪ {1, 2, 3} }

push 1;

push 2;
push 3;

��������

��������

��������

��������

No proof reuse

(not thread-modular)

A reusable specification for pop?

y := pop();
{ y = ??? }

{ S = Nil }

• Higher-order functions and closures

• Types and Type Inference

• Polymorphism

• Laziness

• Point-free style

• Combinator Libraries

• Purely functional data structures

 23

The Essence of Functional Languages
• Algebraic Data Types

• Pattern Matching

• Folds

• Continuations and CPS

• Structural Recursion

• Type Classes

• Monads

• Higher-order functions and closures

• Types and Type Inference

• Polymorphism

• Laziness

• Point-free style

• Combinator Libraries

• Purely functional data structures

 24

The Essence of Functional Languages
• Algebraic Data Types

• Pattern Matching

• Folds

• Continuations and CPS

• Structural Recursion

• Type Classes

• Monads

Enablers for Modular Development

Capture the effect of self-thread, 
parametrise over the effect of others.

(aka Subjective specifications)

Idea: Interference-Parameterised
Specifications

push x{ S = xs } { S′ = x :: xs }

Atomic stack specifications

x :: xsxs

“abstract timestamp”

tk →

Atomic stack specifications

tk →
tk+1 →

tk+2 →
tk+3 →

…
…

tk+n → |
{z

}

abstract time increases at  
every concrete push/pop operationtk+4 →

Changes by this thread Changes by other threads

tk+4 →

tk+1 →

tk+3 →

tk+n →

tk →

tk+2 →

…
…

y := pop();

{ y = ⊥ ⋁ y = v, where v ∈ pushed(Ho) }

{ Hs = ∅ }

•Hs — “ghost history” of my pushes/pops to the stack
•Ho — “ghost history” of pushes/pops by all other threads

Subjective stack specifications

what I popped depends 
on what the others have pushed

| {z }

Sergey, Nanevski, Banerjee [ESOP’15]

λHo . pick (pushed(Ho))

y := pop();

{ S = Nil }

push 1;

push 2;
push 3;

��������

��������

��������

��������

push 1;

push 2;

{ Hs = ∅ }

{ Hs = t1 ↦ (xs, 1::xs) }

{ Hs = t1 ↦ (xs, 1::xs) ⊕ t2 ↦ (ys, 2::ys) }

push 1;

push 2;

{ Hs = ∅ }

{ Hs = t1 ↦ (xs, 1::xs) }

{ Hs = t1 ↦ (xs, 1::xs) ⊕ t2 ↦ (ys, 2::ys) }

push 1;

push 2;

{ Hs = ∅ }

{ Hs = t1 ↦ (xs, 1::xs) }

{ Hs = t1 ↦ (xs, 1::xs) ⊕ t2 ↦ (ys, 2::ys) }

push 3;

��������

��������

{ Hs = ∅ }

{ Hs = t3 ↦ (zs, 3::zs) }

{ Hs = t1 ↦ (xs, 1::xs) ⊕  
 t2 ↦ (ys, 2::ys) }

{ Hs = t3 ↦ (zs, 3::zs) }

push 1;

push 2;
push 3;

��������

��������

{ Hs = ∅ }
{ Hs = ∅ }

y := pop();

��������

��������

{ Hs = ∅ }

{ y ∈ {⊥} ∪ pushed(Ho) }

{ Hs = t1 ↦ (xs, 1::xs) ⊕  
 t2 ↦ (ys, 2::ys) }

{ Hs = t3 ↦ (zs, 3::zs) }

push 1;

push 2;
push 3;

��������

��������

{ Hs = ∅ }
{ Hs = ∅ }

y := pop();

��������

��������

{ Hs = ∅ }

{ y ∈ {⊥} ∪ pushed(Ho) }
1
2

3

{ Hs = t1 ↦ (xs, 1::xs) ⊕  
 t2 ↦ (ys, 2::ys) }

{ Hs = t3 ↦ (zs, 3::zs) }

push 1;

push 2;
push 3;

��������

��������

{ Hs = ∅ }
{ Hs = ∅ }

y := pop();

��������

��������

{ Hs = ∅ }

{ y ∈ {⊥} ∪ {1, 2, 3} }

Spin-lock Ticketed lock

Allocator

Increment

Abstract lock

Treiber stack

Flat combiner

FC stack

Producer/Consumer
Sequential stack

Abstract stack

Jayanti’s  
snapshot

Snapshot client

Atomic 
snapshot

Exchanger
Counting
network

Quiescent 
client

Quantitatively
relaxed client

Concurrent Graph
Manipulations

Payoff: Verified Concurrent Libraries
Sergey et al. [PLDI’15]

 39

Functional Programming Ideas in…

Software EngineeringTeachingResearch

… for modularity and proof reuse

 40

Functional Programming Ideas in…

Software EngineeringTeachingResearch

… for Modularity and Proof Reuse

Algorithmic Competitions at UCL (2016-2018)

• Targeting 2nd year undergrads, team work

• One week-long

• Should involve math and programming

• Challenging for students, but easy to assess

Algorithmic Competitions at UCL (2016-2018)

The Competitions

• 2016: Art Gallery Competition 

• 2017: Move-and-Tag Competition 

• 2018: Room Furnishing

based on: 
 

Chvátal’s Art Gallery Problem (1975)

Art Gallery Competition

How many guards do we really need?

The answer depends on the shape of the gallery.

How many guards do we really need?

The answer depends on the shape of the gallery.

How many guards do we really need?

How many guards do we really need?

How many guards do we really need?

How many guards do we really need?

For a given gallery (polygon),  
find the minimal set of guards’ positions,  

so together the guards can “see” the whole interior.

Art Gallery Problem

Project: Art Gallery Competition

Find the best solutions for a collection of large polygons.

• 58 vertices
• 5 guards

Making it Fun

• Problem generator;
‣ Polygons with different “features” (convex, rectangular, etc.)

• Solution checker with online feedback
‣ geometric machinery (triangulation, visibility, …)
‣ web-server

• Make sure that it all works.

• Problem generator;
‣ Polygons with different “features” (convex, rectangular, etc.)

• Solution checker with online feedback
‣ geometric machinery (triangulation, visibility, …)
‣ web-server

• Make sure that it all works.

Making it Fun

Growing polygons

Primitive polygons with specific “features”

Seed

Growing polygons

Growing polygons

Growing polygons

Growing polygons

Growing polygons

Growing polygons

Growing polygons

Can we enumerate “primitive” polygons  
and plug arbitrary shapes generators?

 65

 66

The Essence of Functional Languages
• Higher-order functions and closures

• Types and Type Inference

• Polymorphism

• Laziness

• Point-free style

• Combinator Libraries

• Algebraic Data Types

• Purely functional data structures

• Pattern Matching

• Folds

• Continuations and CPS

• Structural Recursion

• Type Classes

• Monads

• Higher-order functions and closures

• Types and Type Inference

• Polymorphism

• Laziness

• Point-free style

• Combinator Libraries

• Algebraic Data Types

 67

The Essence of Functional Languages
• Purely functional data structures

• Pattern Matching

• Folds

• Continuations and CPS

• Structural Recursion

• Type Classes

• Monads

Enumeration and Extensibility

 68

“Polygon Combinator”

trait PolygonGenerator extends GeneratorPrimitives { 
 
 val seeds : List[Polygon]
 val primitives : List[(Int) => Polygon]
 val locate : Double => Option[(Double, Double)]

 val seedFreqs : List[Int]
 val primFreqs : List[Int]

 val generations : Int

 ...
}

Generating random polygons

Rectilinear

Quasi-convex

Generating random polygons

Crazy

Generating random polygons

Can we Quick-Check
geometric algorithms?

 73

Bug in textbook visibility algorithm
Randomly generated,

260 vertices,
guards in every node

??!

Bug in textbook visibility algorithm
Randomly generated,

260 vertices,
guards in every node

After shrinking:
20 vertices

Bug in textbook visibility algorithm

Removed irrelevant  
light sources

Bug in textbook visibility algorithm

Removed irrelevant  
light sources

Bug in textbook visibility algorithm

ICFP 2016

Beyond Classroom:
ICFP Programming Contest 2019

Contest Report  
on Tuesday, 17:45

 80

Functional Programming Ideas in…

Software EngineeringTeachingResearch

… for creating fun assignments… for modularity and proof reuse

 81

Functional Programming Ideas in…

Software EngineeringTeachingResearch

… for modularity and proof reuse … for creating fun assignments

 82

 83

Smart Contracts

• Stateful mutable objects replicated via a consensus protocol
• Use valuable resource (gas) to prevent “expensive” computations
• Yet, should be able to handle arbitrarily large data
• Can fail at any moment and roll-back (transactional behaviour)

Smart Contracts

• Stateful mutable objects replicated via a consensus protocol

• Use valuable resource (gas) to prevent “expensive” computations

• Yet, should be able to handle arbitrarily large data

• Can fail at any moment and roll-back (transactional behaviour)

Can we have an interpreter 
supporting all of these,

while keeping the “core”
semantics simple  

and easy to maintain?

z
}|

{
<latexit sha1_base64="o/9y/+iYATmvWYLFFwU2SaLHtLQ=">AAACCXicbVBNS8NAEN3Ur1q/oh69LBbBU0lE0GPRi8cK9gPaUCbbTbt0sxt2N0IJuXrxr3jxoIhX/4E3/43bNoi2Phh4vDfDzLww4Uwbz/tySiura+sb5c3K1vbO7p67f9DSMlWENonkUnVC0JQzQZuGGU47iaIQh5y2w/H11G/fU6WZFHdmktAghqFgESNgrNR3cU9aO1RAaNZLRiCMjDP4QZ733apX82bAy8QvSBUVaPTdz95AkjSmwhAOWnd9LzFBBsowwmle6aWaJkDGMKRdSwXEVAfZ7JMcn1hlgCOpbAmDZ+rviQxirSdxaDtjMCO96E3F/7xuaqLLIGMiSQ0VZL4oSjk2Ek9jwQOmKDF8YgkQxeytmIzAxmJseBUbgr/48jJpndV8r+bfnlfrV0UcZXSEjtEp8tEFqqMb1EBNRNADekIv6NV5dJ6dN+d93lpyiplD9AfOxzfaMpsN</latexit><latexit sha1_base64="o/9y/+iYATmvWYLFFwU2SaLHtLQ=">AAACCXicbVBNS8NAEN3Ur1q/oh69LBbBU0lE0GPRi8cK9gPaUCbbTbt0sxt2N0IJuXrxr3jxoIhX/4E3/43bNoi2Phh4vDfDzLww4Uwbz/tySiura+sb5c3K1vbO7p67f9DSMlWENonkUnVC0JQzQZuGGU47iaIQh5y2w/H11G/fU6WZFHdmktAghqFgESNgrNR3cU9aO1RAaNZLRiCMjDP4QZ733apX82bAy8QvSBUVaPTdz95AkjSmwhAOWnd9LzFBBsowwmle6aWaJkDGMKRdSwXEVAfZ7JMcn1hlgCOpbAmDZ+rviQxirSdxaDtjMCO96E3F/7xuaqLLIGMiSQ0VZL4oSjk2Ek9jwQOmKDF8YgkQxeytmIzAxmJseBUbgr/48jJpndV8r+bfnlfrV0UcZXSEjtEp8tEFqqMb1EBNRNADekIv6NV5dJ6dN+d93lpyiplD9AfOxzfaMpsN</latexit><latexit sha1_base64="o/9y/+iYATmvWYLFFwU2SaLHtLQ=">AAACCXicbVBNS8NAEN3Ur1q/oh69LBbBU0lE0GPRi8cK9gPaUCbbTbt0sxt2N0IJuXrxr3jxoIhX/4E3/43bNoi2Phh4vDfDzLww4Uwbz/tySiura+sb5c3K1vbO7p67f9DSMlWENonkUnVC0JQzQZuGGU47iaIQh5y2w/H11G/fU6WZFHdmktAghqFgESNgrNR3cU9aO1RAaNZLRiCMjDP4QZ733apX82bAy8QvSBUVaPTdz95AkjSmwhAOWnd9LzFBBsowwmle6aWaJkDGMKRdSwXEVAfZ7JMcn1hlgCOpbAmDZ+rviQxirSdxaDtjMCO96E3F/7xuaqLLIGMiSQ0VZL4oSjk2Ek9jwQOmKDF8YgkQxeytmIzAxmJseBUbgr/48jJpndV8r+bfnlfrV0UcZXSEjtEp8tEFqqMb1EBNRNADekIv6NV5dJ6dN+d93lpyiplD9AfOxzfaMpsN</latexit><latexit sha1_base64="o/9y/+iYATmvWYLFFwU2SaLHtLQ=">AAACCXicbVBNS8NAEN3Ur1q/oh69LBbBU0lE0GPRi8cK9gPaUCbbTbt0sxt2N0IJuXrxr3jxoIhX/4E3/43bNoi2Phh4vDfDzLww4Uwbz/tySiura+sb5c3K1vbO7p67f9DSMlWENonkUnVC0JQzQZuGGU47iaIQh5y2w/H11G/fU6WZFHdmktAghqFgESNgrNR3cU9aO1RAaNZLRiCMjDP4QZ733apX82bAy8QvSBUVaPTdz95AkjSmwhAOWnd9LzFBBsowwmle6aWaJkDGMKRdSwXEVAfZ7JMcn1hlgCOpbAmDZ+rviQxirSdxaDtjMCO96E3F/7xuaqLLIGMiSQ0VZL4oSjk2Ek9jwQOmKDF8YgkQxeytmIzAxmJseBUbgr/48jJpndV8r+bfnlfrV0UcZXSEjtEp8tEFqqMb1EBNRNADekIv6NV5dJ6dN+d93lpyiplD9AfOxzfaMpsN</latexit>

 86

The Essence of Functional Languages
• Higher-order functions and closures

• Types and Type Inference

• Polymorphism

• Laziness

• Point-free style

• Combinator Libraries

• Algebraic Data Types

• Purely functional data structures

• Pattern Matching

• Folds

• Structural Recursion

• Continuations and CPS

• Type Classes

• Monads

• Higher-order functions and closures

• Types and Type Inference

• Polymorphism

• Laziness

• Point-free style

• Combinator Libraries

• Algebraic Data Types

 87

The Essence of Functional Languages
• Purely functional data structures

• Pattern Matching

• Folds

• Structural Recursion

• Continuations and CPS

• Type Classes

• Monads

Expressing any Effects  
&  

Modular Interpreters

We show how a set of building blocks can be used to
construct programming language interpreters, and present
implementations of such building blocks capable of supporting
many commonly known features, including simple
expressions, three different function call mechanisms […],
references and assignment, nondeterminism, first-class
continuations, and program tracing.

 88

• About 200 LOC of OCaml

• Hasn’t been affected  
by multiple modifications in the
back-end protocol

• Changes in gas accounting  
have not affected the core
interpreter

• Lots of performance bottlenecks
fixed without ever touching the
evaluator

 
Powered by Monads  

 89

Functional Programming Ideas in…

Software EngineeringTeachingResearch

… for modularity and proof reuse … for creating fun assignments … for robust and maintainable artefacts

 90

Functional Programming Ideas in…

Software EngineeringTeachingResearch

… for modularity and proof reuse … for creating fun assignments … for robust and maintainable artefacts

• FP insights spread far beyond programming in
OCaml, Haskell, Racket, etc.

• FP keeps evolving: new powerful ideas are
constantly emerging: effect handlers, staging,
automatic differentiation, security type systems…

• Those ideas can be your tools, too!

 91

To Take Away

Thanks!

