Gradual Ownership Types

Ilya Sergey Dave Clarke

Ownership Types (a gradual introduction)

```
class List {
 Link head;
 void add(Data d) {
    head = new Link(head, d);
  Iterator makeIterator() {
    return new Iterator(head);
  }
class Link {
 Link next;
 Data data;
 Link(Link next, Data data) {
   this.next = next; this.data = data;
  }
}
class Iterator {
 Link current;
 Iterator(Link first) {
    current = first;
  }
 void next() { current = current.next; }
 Data elem() { return current.data; }
 boolean done() {
    return (current == null);
  }
```



```
class List {
 Link head;
 void add(Data d) {
    head = new Link(head, d);
  }
  Iterator makeIterator() {
    return new Iterator(head);
  }
}
class Link {
 Link next;
 Data data;
 Link(Link next, Data data) {
    this.next = next; this.data = data;
  }
}
class Iterator {
 Link current;
 Iterator(Link first) {
    current = first;
  }
 void next() { current = current.next; }
 Data elem() { return current.data; }
 boolean done() {
    return (current == null);
  }
```



```
class List {
 Link head;
 void add(Data d) {
    head = new Link(head, d);
  Iterator makeIterator() {
    return new Iterator(head);
  }
}
class Link {
 Link next;
 Data data;
 Link(Link next, Data data) {
    this.next = next; this.data = data;
  }
}
class Iterator {
 Link current;
 Iterator(Link first) {
    current = first;
  }
 void next() { current = current.next; }
 Data elem() { return current.data; }
 boolean done() {
    return (current == null);
  }
```



```
class List {
 Link head;
 void add(Data d) {
    head = new Link(head, d);
  Iterator makeIterator() {
    return new Iterator(head);
  }
}
class Link {
 Link next;
 Data data;
 Link(Link next, Data data) {
    this.next = next; this.data = data;
  }
}
class Iterator {
 Link current;
 Iterator(Link first) {
    current = first;
  }
 void next() { current = current.next; }
 Data elem() { return current.data; }
 boolean done() {
    return (current == null);
  }
```



```
class List {
 Link head;
 void add(Data d) {
    head = new Link(head, d);
  Iterator makeIterator() {
    return new Iterator(head);
  }
class Link {
 Link next;
 Data data;
 Link(Link next, Data data) {
   this.next = next; this.data = data;
  }
}
class Iterator {
 Link current;
 Iterator(Link first) {
    current = first;
  }
 void next() { current = current.next; }
 Data elem() { return current.data; }
 boolean done() {
    return (current == null);
  }
```


Owners-as-Dominators

(OAD)

```
class List<owner, data> {
 Link head<this, data>;
 void add(Data<data> d) {
   head = new Link<this, data>(head, d);
 Iterator<this, data> makeIterator() {
   return new Iterator<this, data>(head);
  }
class Link<owner, data> {
 Link<owner, data> next;
 Data<data> data;
 Link(Link<owner, data> next, Data<data> data) {
   this.next = next; this.data = data;
  }
class Iterator<owner, data> {
 Link<owner, data> current;
 Iterator(Link<owner, data> first) {
   current = first;
  }
 void next() { current = current.next; }
 Data<data> elem() { return current.data; }
 boolean done() {
   return (current == null);
```


Owners-as-Dominators

Good things about Ownership Types

- data-race freedom [Boyapati-Rinard:OOPSLA01]
- disjointness of effects [Clarke-Drossopoulou:OOPSLA02]
- various confinement properties [Vitek-Bokowski:OOPSLA99]
- effective memory management [Boyapati-et-al:PLDI03]
- modular reasoning about aliasing [Müller:VSTTE05]

Bad things about Ownership Types

> Verbose and Restrictive

Bad things about Ownership Types

```
class List {
 Link head;
 void add(Data d) {
    head = new Link(head, d);
 Iterator makeIterator() {
    return new Iterator(head);
  }
class Link {
 Link next;
 Data data;
 Link(Link next, Data data) {
   this.next = next; this.data = data;
  }
class Iterator {
 Link current;
 Iterator(Link first) {
   current = first;
  }
 void next() { current = current.next; }
 Data elem() { return current.data; }
 boolean done() {
    return (current == null);
  }
```

```
class List<owner, data> {
 Link head<this, data>;
 void add(Data<data> d) {
   head = new Link<this, data>(head, d);
 Iterator<this, data> makeIterator() {
   return new Iterator<this, data>(head);
  }
class Link<owner, data> {
 Link<owner, data> next;
 Data<data> data;
 Link(Link<owner, data> next, Data<data> data) {
   this.next = next; this.data = data;
 }
class Iterator<owner, data> {
 Link<owner, data> current;
 Iterator(Link<owner, data> first) {
   current = first;
 void next() { current = current.next; }
 Data<data> elem() { return current.data; }
 boolean done() {
   return (current == null);
 }
       15 annotations
}
```

The intention


```
class List<owner, data> {
 Link head<this, data>;
 void add(Data<data> d) {
    head = new Link<this, data>head, d);
  Iterator<this, data> makeIterator() {
    return new Iterator<this, data>(head);
class Link<owner, data>
 Link<owner, data> next;
 Data<data> data;
 Link(Link<owner, data> next, Data<data> data) {
    this.next = next; this.data = data;
class Iterator<owner, data> {
 Link<owner, data> current;
  Iterator(Link<owner, data> first) {
   current = first;
 void next() { current = current.next; }
 Data<data> elem() { return current.data; }
 boolean done() {
    return (current == null);
```

The intention

Can we implement the same intention with a fewer amount of annotations?

A few analogies

- properties of data ~ types
- OAD invariant ~ more precise types

From untyped to typed - I Type Inference

- SmallTalk [Palsberg-Schwartzbach:OOPSLA91]
- Ruby [Fur-An-Foster-Hicks:SAC09, An-Chaudhuri-Foster-Hicks:POPLII]
- JavaScript [Jensen-Møller-Thiemann:SAS10, Guha-al:ESOP11]

Ownership (Type) Inference

- Profiling-based approaches
 - Wren:MS03, Dietl-Müller:IWACO'07...
- Static CFA-based approaches
 - Ownership Types: Moelius-Souter:MASPLAS04, Huang-Milanova:IWACOII, Milanova-Vitek:TOOLS10, Milanova-Liu:TR10, Dietl-Ernst-Muller:ECOOPII ...
 - Ownership properties: Geilman-Poetzsch-Heffer:IWACOII, Ma-Foster:OOPSLA07, Greenfieldboyce:Foster:OOPSLA07, Aldrich-Kostadinov-Chambers:OOPSLA02 ...

Why not ownership inference?

- Correctness of inference with respect to the type system is *hard* to prove
- Inferred results might be *imprecise* and *difficult* to analyze

From untyped to typed - II

(Partially) relying on dynamic checks

- Gradual Typing Siek-Taha:ECOOP07, Herman-Tomb-Flanagan:TFP07]
- Hybrid Types [Flanagan:POPL06]
- Contracts [Findler-Felleisen:ICFP02, Gray-Findler-Flatt:OOPSLA05]
- Like types [Wrigstad-ZappaNardelli-Lebresne-Östlund-Vitek:POPL10]

Dynamic ownership [Gordon-Noble:DLS07]
No relation to the type system

* Detailed comparison: Greenberg-Pierce-Weirich: POPLI0

*

Gradual Types

- Programmers may omit type annotations and run the program immediately
 - Run-time checks are inserted to ensure type safety
- Programmers may add type annotations to increase static checking
 - When all sites are annotated, *all* type errors are caught at compile-time

Gradual Ownership Types

A syntactic type parametrized with owners:

C<owner, outer>

Some owners might be unknown:

C<?, outer>

Or even all of them:

 $C \equiv C C^{?}, ?^{>}$

Type equality: types T_1 and T_2 are equal:

C<owner, outer> = C<owner, outer>

Type equality: types T_1 and T_2 are consistent C < owner, ? > ~ C < ?, outer >

I.e., T_1 and T_2 might correspond to the same runtime values

Traditional Subtyping

class D<MyOwner> {...}

class C<Owner1, Owner2> extends D<Owner1> {...}

Subtyping: T_1 is a subtype of T_2

C<owner, outer> \leq D<owner>

Gradual Subtyping

class D<MyOwner> {...}

class C<Owner1, Owner2> extends D<Owner1> {...}

C<?, outer> \lesssim D<owner>

Static semantics

$E; B \vdash p \sim p'$			Consiste	ent owners	5
$(\text{CON-REFL}) \\ \underline{E; B \vdash p} \\ \overline{E; B \vdash p \sim p}$	(CON-RIGHT) $E; B \vdash p$ $E; B \vdash ? \sim p$	$(\text{CON-LEFT}) \\ E; B \vdash p \\ E; B \vdash p \sim ?$	(CON-DEPENDENT1) $ \underbrace{E; B \vdash p E; B \vdash x^{c.i}}_{E; B \vdash p \sim x^{c.i}} $	(CON-DEPENDENT2)	.i
$E; B \vdash t \leq t'$ $Traditional Subtyping$ (SUB-CLASS)					
$(SUB-REFL) E; B \vdash t \overline{E; B \vdash t \leq}$	$\underbrace{E; B \vdash t \leq t'}_{E; B} \xrightarrow{(SUI)}_{E; B}$	$\begin{array}{c} \text{B-TRANS} \\ \hline E; B \vdash t' \leq t' \\ \vdash t \leq t'' \end{array}$	$E;B \vdash c$ $E;B \vdash c \langle \mathbf{\alpha}_{i \in 1n} \rangle$ ext $E;B \vdash c \langle \mathbf{\sigma} \rangle \leq E;B \vdash c \langle \mathbf{\sigma} \rangle \leq E$	$= c \langle \boldsymbol{\sigma} \rangle$ ends $c' \langle r_{i \in 1n'} \rangle \{\}$ $\leq c' \langle \boldsymbol{\sigma}(r_i)_{i \in 1n'} \rangle$	
$E; B \vdash t \sim t$		$E; B \vdash$	$t \lesssim t'$ $E;B$	t" Good	type"
$E; B \vdash c \langle p_i \\ p_i \\ E; B \vdash c \\ E; E \vdash c \\ E; B \vdash c \\ E; E \vdash c \\ $	$(CON-TYPE) \\ E \in 1n \rangle E; B \vdash c \langle q_i \rangle \\ i \sim q_i \forall i \in 1n \\ c \langle p_{i \in 1n} \rangle \sim c \langle q_{i \in 1n} \rangle$	$ \begin{array}{c} E;B \\ \hline E;B \\ \hline E;B \\ \hline E;B \\ \hline \end{array} \end{array} $	$\frac{(\text{GRAD-SUB})}{c c \langle \boldsymbol{\sigma} \rangle \leq c' \langle \boldsymbol{\sigma}' \rangle} = \frac{c \langle \boldsymbol{\sigma} \rangle \leq c' \langle \boldsymbol{\sigma}'' \rangle}{c \langle \boldsymbol{\sigma} \rangle \leq c' \langle \boldsymbol{\sigma}'' \rangle} = \frac{E;B}{c \langle \boldsymbol{\sigma} \rangle \leq c' \langle \boldsymbol{\sigma}'' \rangle}$	arity(c) = n $\vdash p_1 \leq p_i \forall i \in 1n$ $E; B \vdash c \langle p_{i \in 1n} \rangle$	
onsister	nt types	5- "Gr	adual Suc	styping"	

Example I

List list; // = List<?,?>
list = new List<p, world>();
list = new List<this, world>();
List<p, world> newList = list;

Dangerous assignment!

Example I

List list; // = List<?,?>
list = new List<p, world>();
list = new List<this, world>();
List<p, world> newList =
 (List<p, world>)list;
 Dynamic type cast inserted

Example II

Example II

Type-directed compilation

Dynamic casts and boundary checks are inserted basing on type information.

Type-directed compilation

Two-staged program translation

• Insert dynamic casts to <u>coerce</u> types

- Type consistency \Rightarrow Type equality
- Insert boundary checks when the invariant can be violated
 - Check \prec for unknown owners

Minimal amount of annotations

Gradual Typing and Compilation (informally)*

Theorem I:

No unknown owners \Rightarrow no dynamic casts

Corollary :

No unknown owners \Rightarrow static invariant guaranty

(And also, no runtime overhead and failed casts)

Theorem 2:

A (gradually) well-typed program is compiled into a (statically) well-typed program.

* Formal treatment + proofs at http://people.cs.kuleuven.be/~ilya.sergey/gradual

Type safety result (informally)

Theorem 3:

A (statically) well-typed program does not violate the OAD invariant but might fail on a dynamic check.

Corollary:

A gradually well-typed program, being compiled, does not violate the OAD invariant.

"Well-typed programs don't go wrong" Milner, 1978

Pitfalls of the approach

- Static safety is traded for dynamic checks
- Memory overhead
 - References to owners are stored in objects

• Runtime overhead

dynamic boundary checks and type casts

Implementation*

- Implemented in JastAddJ [Ekman-Hedin:OOPSLA07]
 - Extended JastAddJ compiler for Java 1.4
- 2,600 LOC (not including tests and comments)
- Check insertion ⇒ compilation warning
- Source-to-source translation

* Available from http://github.com/ilyasergey/Gradual-Ownership

Experience

- Java Collection Framework (JDK 1.4.2)
 - 46 source files, ~8,200 LOC
- Securing inner Entries of collections
- Questions addressed:
 - How many annotations are needed minimally?
 - What is the execution cost?
 - How many annotations for full static checking?

Experience

- Minimal amount of annotations
 - LinkedList 17
 - LinkedMap 15
- Performance overhead
 - ~1.5-2 times (for extensive updates)
- Full migration
 - LinkedList yes, 34 annotations
 - LinkedMap no, because of static
 - (best 28 annotations)

Summary

Gradual Ownership Types

- An alternative to ownership inference
- Combines static and dynamic ownership checks, but allows *full static* safety
- Type-directed compilation
- Minimal annotations are unavoidable
- A tradeoff between verbosity and safety

Thanks