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COP definition

Context-oriented programming (COP) is a programming
approach whereby the context in which expressions evaluate can be
adapted as a program runs
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COP is implicitly (or explicitly) assumed in...

Groovy
LISP/Clojure
Ruby
Objective C
ContextJ, ContextL
Lasagne
Ambience
CaesarJ
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Example: with, without and proceed in action

Enhanced ContextJ

class Actor {
void act() {

...
without(Logging) { stealth (); }

}
}

layer Logging {
class Actor {

void act() {
proceed ();
println("Acted");

}
}

}

with (Logging) { (new Actor ()). act(); }

void act() {...}class D

layer Logging void act() {...}

procced()

with(Logging){new Actor().act()}

act()

void stealth() {...}

without(Logging) { stealth(); }
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Possible pitfalls

Problems to solve

What is the order of expression evaluation for COP
language?

There is a big step semantics (Schippers et al.)

How to ensure that all method invocations are resolved at

runtime?

Are statically-defined methods overridden correctly at

runtime?
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Possible pitfalls

We need an operational semantics
with the sound type system!
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What is ContextFJ

ContextFJ is a language to describe core features of the

Context-Oriented programming

Based on Featherweight Java

Has layers as dedicated language constructs

Includes proceed, with and without statements

Has no inheritance and subtyping
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ContextFJ syntax: Terms and Contexts

Terms

t ::= x | t.f | t.mL(t) | new C(t)

| with(l)t | without(l)t | proceed(t)

Values

v ::= new C(v)

Evaluation Contexts

E[ ] ::= [ ] | E[[ ].f ] | E[[ ].mL(t)]

| E[v.mL(v, [ ], t)] | E[new C(v, [ ], t)]

| E[with(l)[ ]] | E[without(l)[ ]]
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ContextFJ syntax: layers and method bindings

Layer definition

L ::= layer l {B}

Method bindings

B ::= (m, C0) 7→M
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Evaluation: bound methods

Bound methods

BML([ ]) = ∅
BML(E[[ ].f ])
BML(E[[ ].m(t)])
BML(E[v.m(v, [ ], t)])
BML(E[new C(v, [ ], t)])

9>=>; = BML(E)

BML(E[with(l)[ ]]) =

(
BML(E), if l ∈ L
BML(E) ∪ dom(l),

otherwise

BML(E[without(l)[ ]]) = BML∪{l}(E)
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Evaluation: excluded layers

Excluded layers

XL([ ]) = ∅
XL(E[[ ].f ])
XL(E[[ ].m(t)])
XL(E[v.m(v, [ ], t)])
XL(E[new C(v, [ ], t)])
XL(E[with(l)[ ]])

9>>=>>; = XL(E)

XL(E[without(l)[ ]]) = {l} ∪ XL(E)
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Reduction rules (1)

(E-With)

E[with(l)v]→ E[v]

(E-Without)

E[without(l)v]→ E[v]
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Reduction rules (2)

(E-InvkLayer)

lmbody(l,m,C) = (x, t)

(m,C) /∈ BML(E′) l /∈ XL(E′)

E[with(l)E′[(new C(v)).mL(u)]]→
E[with(l)E′[ {x 7→ u, proceed 7→ this.mL∪{l}, this 7→ new C(v)} t]]

(E-InvkClass)

(m,C) /∈ BML(E) mbody(m,C) = (x, t)

E[new C(v)).mL(u)]→ E[{x 7→ u, this 7→ new C(v)}t]
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Example: evaluation

layer l1 {class C { D m(){return proceed(); } }}

layer l2 {class D { C n(){return new C(); } }}

class C {D m(){return new D(); }}

class D {}

with(l1){with(l2){ new C().m() .n()}}

→ with(l1){with(l2){ new C().m{l1}() .n()}}

→ with(l1){with(l2){ new D().n() }}

→ with(l1){ with(l2){new C()} }

→ with(l1){new C()}

→ new C()
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Type system outline

Some methods need other undefined methods of specific

types to be evaluated - requirements

Before invoke method we should satisfy its requirements

Layers provide new methods and require some other ones
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ContextFJ syntax again: method definitions

Method definition

M ::= C [Ψ] m(C x){return t; }

Method requirements

Ψ ::= ε | MT,Ψ

Method types

MT ::= (m,C0) 7→ [Ψ]C → C • L

Excluded layers

L ::= a set of layer names | > (∀L.L ⊆ >)
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Method types demystified

(m, C0) 7→ [Ψ]C → C • L

m is a method’s name; C0 is a receiver class type; C are

parameter types; and C is the result type;

L is the set of excluded layers

Ψ is a set of method requirements
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Term typing

Typing relation

Ψ; Γ ` t : C

Term is well-typed.

Root term t must be typed in the empty environment.

∃C : ∅; ∅ ` t : C
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Expression typing

Key idea

Method invocations add new requirement into the set Ψ

Layer activations with(l) removes provided methods

from Ψ

proceed() and without(l) statements modify method

types in Ψ, excluding new layers
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Method invocation typing

(T-Invk)

Ψ ; Γ ` t0 : C Ψ; Γ ` t : C

mtype(m, C, Ψ) = [Φ]C → D • L′

Φ � Ψ L ⊆ L′

Ψ; Γ ` t0.mL(t) : D

Method invocation is well-typed if
it is defined in some class or in requirements Ψ;
its requirements are satisfied by Ψ;
its set of excluded layers L is weaker than a set L′ we suppose
to exclude for method of this type.
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Layer activation typing

(T-With)

(Ψ, Φ) ; Γ ` t : C

layer l {B}
‖Φ‖ ⊆ provides(l)
requires(l) � Ψ

∀((m, C0) 7→ C → D • L ∈ Φ) · l /∈ L

Ψ ; Γ ` with(l)t : C

Using a layer l by with(l) statement allows us to exclude a
part Φ of requirements from the environment
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Benefits and limitations

Caught errors
Unresolved method calls
Illegal method overriding in layers
proceed() calls without a higher method to proceed to

System limitations
No inheritance
No class-based polymorphism
Too many annotations are required for analysis
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Future work

Semantics for contexts and inheritance

C <: D

layer l1{class C { F m(C x){return t1; } }}

layer l2{class D { F m(C x){return t2; } }}

with (l1) {
with (l2) {

new C().m(...);
}

}

Which one of m()s should we pick?
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Q&A

Thanks for your attention!
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