
What is COP
Problem description
COP formalization

A Semantics for Context-Oriented Programming
with Layers

Dave Clarke and Ilya Sergey

Katholieke Universiteit Leuven
{Dave.Clarke,Ilya.Sergey}@cs.kuleuven.be

International workshop on Context-Oriented
Programming at ECOOP’09

7 July 2009

Ilya Sergey COP with Layers

What is COP
Problem description
COP formalization

Why yet another semantics for COP?

Ilya Sergey COP with Layers

What is COP
Problem description
COP formalization

COP definition
Some of COP implementations

COP definition

Context-oriented programming (COP) is a programming
approach whereby the context in which expressions evaluate can be
adapted as a program runs

Ilya Sergey COP with Layers

What is COP
Problem description
COP formalization

COP definition
Some of COP implementations

COP key features

Context-dependent evaluation

Explicit context

Context manipulation

Ilya Sergey COP with Layers

What is COP
Problem description
COP formalization

COP definition
Some of COP implementations

COP key features

Context-dependent evaluation

Explicit context

Context manipulation

Ilya Sergey COP with Layers

What is COP
Problem description
COP formalization

COP definition
Some of COP implementations

COP key features

Context-dependent evaluation

Explicit context

Context manipulation

Ilya Sergey COP with Layers

What is COP
Problem description
COP formalization

COP definition
Some of COP implementations

COP is implicitly (or explicitly) assumed in...

Groovy
LISP/Clojure
Ruby
Objective C
ContextJ, ContextL
Lasagne
Ambience
CaesarJ

Ilya Sergey COP with Layers

What is COP
Problem description
COP formalization

COP definition
Some of COP implementations

Example: with, without and proceed in action

Enhanced ContextJ

class Actor {
void act() {

...
without(Logging) { stealth (); }

}
}

layer Logging {
class Actor {

void act() {
proceed ();
println("Acted");

}
}

}

with (Logging) { (new Actor ()). act(); }

void act() {...}class D

layer Logging void act() {...}

procced()

with(Logging){new Actor().act()}

act()

void stealth() {...}

without(Logging) { stealth(); }

Ilya Sergey COP with Layers

What is COP
Problem description
COP formalization

Possible pitfalls

Problems to solve

What is the order of expression evaluation for COP
language?

There is a big step semantics (Schippers et al.)

How to ensure that all method invocations are resolved at

runtime?

Are statically-defined methods overridden correctly at

runtime?

Ilya Sergey COP with Layers

What is COP
Problem description
COP formalization

Possible pitfalls

Problems to solve

What is the order of expression evaluation for COP
language?

There is a big step semantics (Schippers et al.)

How to ensure that all method invocations are resolved at

runtime?

Are statically-defined methods overridden correctly at

runtime?

Ilya Sergey COP with Layers

What is COP
Problem description
COP formalization

Possible pitfalls

Problems to solve

What is the order of expression evaluation for COP
language?

There is a big step semantics (Schippers et al.)

How to ensure that all method invocations are resolved at

runtime?

Are statically-defined methods overridden correctly at

runtime?

Ilya Sergey COP with Layers

What is COP
Problem description
COP formalization

Possible pitfalls

Problems to solve

What is the order of expression evaluation for COP
language?

There is a big step semantics (Schippers et al.)

How to ensure that all method invocations are resolved at

runtime?

Are statically-defined methods overridden correctly at

runtime?

Ilya Sergey COP with Layers

What is COP
Problem description
COP formalization

Possible pitfalls

Problems to solve

What is the order of expression evaluation for COP
language?

There is a big step semantics (Schippers et al.)

How to ensure that all method invocations are resolved at

runtime?

Are statically-defined methods overridden correctly at

runtime?

Ilya Sergey COP with Layers

What is COP
Problem description
COP formalization

Possible pitfalls

We need an operational semantics
with the sound type system!

Ilya Sergey COP with Layers

What is COP
Problem description
COP formalization

ContextFJ
Syntax
Dynamic semantics
Type system
Q&A

What is ContextFJ

ContextFJ is a language to describe core features of the

Context-Oriented programming

Based on Featherweight Java

Has layers as dedicated language constructs

Includes proceed, with and without statements

Has no inheritance and subtyping

Ilya Sergey COP with Layers

What is COP
Problem description
COP formalization

ContextFJ
Syntax
Dynamic semantics
Type system
Q&A

ContextFJ syntax: Terms and Contexts

Terms

t ::= x | t.f | t.mL(t) | new C(t)

| with(l)t | without(l)t | proceed(t)

Values

v ::= new C(v)

Evaluation Contexts

E[] ::= [] | E[[].f] | E[[].mL(t)]

| E[v.mL(v, [], t)] | E[new C(v, [], t)]

| E[with(l)[]] | E[without(l)[]]

Ilya Sergey COP with Layers

What is COP
Problem description
COP formalization

ContextFJ
Syntax
Dynamic semantics
Type system
Q&A

ContextFJ syntax: layers and method bindings

Layer definition

L ::= layer l {B}

Method bindings

B ::= (m, C0) 7→M

Ilya Sergey COP with Layers

What is COP
Problem description
COP formalization

ContextFJ
Syntax
Dynamic semantics
Type system
Q&A

Evaluation: bound methods

Bound methods

BML([]) = ∅
BML(E[[].f])
BML(E[[].m(t)])
BML(E[v.m(v, [], t)])
BML(E[new C(v, [], t)])

9>=>; = BML(E)

BML(E[with(l)[]]) =

(
BML(E), if l ∈ L
BML(E) ∪ dom(l),

otherwise

BML(E[without(l)[]]) = BML∪{l}(E)

Ilya Sergey COP with Layers

What is COP
Problem description
COP formalization

ContextFJ
Syntax
Dynamic semantics
Type system
Q&A

Evaluation: excluded layers

Excluded layers

XL([]) = ∅
XL(E[[].f])
XL(E[[].m(t)])
XL(E[v.m(v, [], t)])
XL(E[new C(v, [], t)])
XL(E[with(l)[]])

9>>=>>; = XL(E)

XL(E[without(l)[]]) = {l} ∪ XL(E)

Ilya Sergey COP with Layers

What is COP
Problem description
COP formalization

ContextFJ
Syntax
Dynamic semantics
Type system
Q&A

Reduction rules (1)

(E-With)

E[with(l)v]→ E[v]

(E-Without)

E[without(l)v]→ E[v]

Ilya Sergey COP with Layers

What is COP
Problem description
COP formalization

ContextFJ
Syntax
Dynamic semantics
Type system
Q&A

Reduction rules (2)

(E-InvkLayer)

lmbody(l,m,C) = (x, t)

(m,C) /∈ BML(E′) l /∈ XL(E′)

E[with(l)E′[(new C(v)).mL(u)]]→
E[with(l)E′[{x 7→ u, proceed 7→ this.mL∪{l}, this 7→ new C(v)} t]]

(E-InvkClass)

(m,C) /∈ BML(E) mbody(m,C) = (x, t)

E[new C(v)).mL(u)]→ E[{x 7→ u, this 7→ new C(v)}t]

Ilya Sergey COP with Layers

What is COP
Problem description
COP formalization

ContextFJ
Syntax
Dynamic semantics
Type system
Q&A

Example: evaluation

layer l1 {class C { D m(){return proceed(); } }}

layer l2 {class D { C n(){return new C(); } }}

class C {D m(){return new D(); }}

class D {}

with(l1){with(l2){ new C().m() .n()}}

→ with(l1){with(l2){ new C().m{l1}() .n()}}

→ with(l1){with(l2){ new D().n() }}

→ with(l1){ with(l2){new C()} }

→ with(l1){new C()}

→ new C()

Ilya Sergey COP with Layers

What is COP
Problem description
COP formalization

ContextFJ
Syntax
Dynamic semantics
Type system
Q&A

Type system outline

Some methods need other undefined methods of specific

types to be evaluated - requirements

Before invoke method we should satisfy its requirements

Layers provide new methods and require some other ones

Ilya Sergey COP with Layers

What is COP
Problem description
COP formalization

ContextFJ
Syntax
Dynamic semantics
Type system
Q&A

Type system outline

Some methods need other undefined methods of specific

types to be evaluated - requirements

Before invoke method we should satisfy its requirements

Layers provide new methods and require some other ones

Ilya Sergey COP with Layers

What is COP
Problem description
COP formalization

ContextFJ
Syntax
Dynamic semantics
Type system
Q&A

Type system outline

Some methods need other undefined methods of specific

types to be evaluated - requirements

Before invoke method we should satisfy its requirements

Layers provide new methods and require some other ones

Ilya Sergey COP with Layers

What is COP
Problem description
COP formalization

ContextFJ
Syntax
Dynamic semantics
Type system
Q&A

ContextFJ syntax again: method definitions

Method definition

M ::= C [Ψ] m(C x){return t; }

Method requirements

Ψ ::= ε | MT,Ψ

Method types

MT ::= (m,C0) 7→ [Ψ]C → C • L

Excluded layers

L ::= a set of layer names | > (∀L.L ⊆ >)

Ilya Sergey COP with Layers

What is COP
Problem description
COP formalization

ContextFJ
Syntax
Dynamic semantics
Type system
Q&A

Method types demystified

(m, C0) 7→ [Ψ]C → C • L

m is a method’s name; C0 is a receiver class type; C are

parameter types; and C is the result type;

L is the set of excluded layers

Ψ is a set of method requirements

Ilya Sergey COP with Layers

What is COP
Problem description
COP formalization

ContextFJ
Syntax
Dynamic semantics
Type system
Q&A

Term typing

Typing relation

Ψ; Γ ` t : C

Term is well-typed.

Root term t must be typed in the empty environment.

∃C : ∅; ∅ ` t : C

Ilya Sergey COP with Layers

What is COP
Problem description
COP formalization

ContextFJ
Syntax
Dynamic semantics
Type system
Q&A

Expression typing

Key idea

Method invocations add new requirement into the set Ψ

Layer activations with(l) removes provided methods

from Ψ

proceed() and without(l) statements modify method

types in Ψ, excluding new layers

Ilya Sergey COP with Layers

What is COP
Problem description
COP formalization

ContextFJ
Syntax
Dynamic semantics
Type system
Q&A

Method invocation typing

(T-Invk)

Ψ ; Γ ` t0 : C Ψ; Γ ` t : C

mtype(m, C, Ψ) = [Φ]C → D • L′

Φ � Ψ L ⊆ L′

Ψ; Γ ` t0.mL(t) : D

Method invocation is well-typed if
it is defined in some class or in requirements Ψ;
its requirements are satisfied by Ψ;
its set of excluded layers L is weaker than a set L′ we suppose
to exclude for method of this type.

Ilya Sergey COP with Layers

What is COP
Problem description
COP formalization

ContextFJ
Syntax
Dynamic semantics
Type system
Q&A

Layer activation typing

(T-With)

(Ψ, Φ) ; Γ ` t : C

layer l {B}
‖Φ‖ ⊆ provides(l)
requires(l) � Ψ

∀((m, C0) 7→ C → D • L ∈ Φ) · l /∈ L

Ψ ; Γ ` with(l)t : C

Using a layer l by with(l) statement allows us to exclude a
part Φ of requirements from the environment

Ilya Sergey COP with Layers

What is COP
Problem description
COP formalization

ContextFJ
Syntax
Dynamic semantics
Type system
Q&A

Benefits and limitations

Caught errors
Unresolved method calls
Illegal method overriding in layers
proceed() calls without a higher method to proceed to

System limitations
No inheritance
No class-based polymorphism
Too many annotations are required for analysis

Ilya Sergey COP with Layers

What is COP
Problem description
COP formalization

ContextFJ
Syntax
Dynamic semantics
Type system
Q&A

Benefits and limitations

Caught errors
Unresolved method calls
Illegal method overriding in layers
proceed() calls without a higher method to proceed to

System limitations
No inheritance
No class-based polymorphism
Too many annotations are required for analysis

Ilya Sergey COP with Layers

What is COP
Problem description
COP formalization

ContextFJ
Syntax
Dynamic semantics
Type system
Q&A

Future work

Semantics for contexts and inheritance

C <: D

layer l1{class C { F m(C x){return t1; } }}

layer l2{class D { F m(C x){return t2; } }}

with (l1) {
with (l2) {

new C().m(...);
}

}

Which one of m()s should we pick?

Ilya Sergey COP with Layers

What is COP
Problem description
COP formalization

ContextFJ
Syntax
Dynamic semantics
Type system
Q&A

Q&A

Thanks for your attention!

Ilya Sergey COP with Layers

	What is COP
	COP definition
	Some of COP implementations

	Problem description
	Possible pitfalls

	COP formalization
	ContextFJ
	Syntax
	Dynamic semantics
	Type system
	Q&A

