
Scilla

Ilya Sergey

ilyasergey.net

Foundations for Verifiable Decentralised Computations  
on a Blockchain

Blockchain Consensus

blockchain
consensus protocol

• transforms a set of transactions into  
a globally-agreed sequence

• “distributed timestamp server” (Nakamoto 2008)

transactions
can be anything

Blockchain Consensus

Blockchain Consensus

Blockchain Consensus

GB = genesis block

• Executed locally, alter the replicated state.

• Simplest variant: transferring funds from A to B,  
 consensus: no double spending.

• More interesting: deploying and executing replicated computations

Smart Contracts

Transactions

| {z }

Smart Contracts
• Stateful mutable objects replicated via a consensus protocol

• State typically involves a stored amount of funds/currency

• One or more entry points: invoked reactively by a client transaction

• Main usages:
• crowdfunding and ICO
• multi-party accounting
• voting and arbitration
• puzzle-solving games with distribution of rewards

• Supporting platforms: Ethereum, Tezos (?), ...

contract Accounting {
 /* Define contract fields */
 address owner;
 mapping (address => uint) assets;

 /* This runs when the contract is executed */
 function Accounting(address _owner) {
 owner = _owner;
 }

 /* Sending funds to a contract */
 function invest() returns (string) {
 if (assets[msg.sender].initialized()) { throw; }
 assets[msg.sender] = msg.value;
 return "You have given us your money";
 }
}

Mutable fields

Constructor

Entry point

• msg argument is implicit
• funds accepted implicitly
• can be called as a function 

from another contract

contract Accounting {
 /* Define contract fields */
 address owner;
 mapping (address => uint) assets;

 /* This runs when the contract is executed */
 function Accounting(address _owner) {
 owner = _owner;
 }

 /* Sending funds to a contract */
 function invest() returns (string) {
 if (assets[msg.sender].initialized()) { throw; }
 assets[msg.sender] = msg.value;
 return "You have given us your money";
 }

 function stealMoney() {
 if (msg.sender == owner) { owner.send(this.balance) }
 }
}

Misconceptions about Smart Contracts

Deployed in a low-level language

Must be Turing-complete

Code is law

Uniform compilation target

Run arbitrary computations

What else if not the code?

Misconceptions about Smart Contracts

Infeasible audit and verification

DoS attacks, cost semantics, exploits

Cannot be amended once deployed

Deployed in a low-level language

Must be Turing-complete

Code is law

What about High-Level Languages?
contract Accounting {
 /* Define contract fields */
 address owner;
 mapping (address => uint) assets;

 /* This runs when the contract is executed */
 function Accounting(address _owner) {
 owner = _owner;
 }

 /* Sending funds to a contract */
 function invest() returns (string) {
 if (assets[msg.sender].initialized()) { throw; }
 assets[msg.sender] = msg.value;
 return "You have given us your money";
 }
}

Ethereum's Solidity

• JavaScript-like syntax

• Calling a function = sending funds

• General recursion and loops

• Reflection, dynamic contract creation

• Lots of implicit conventions

• No formal semantics

What about High-Level Languages?
contract Accounting {
 /* Define contract fields */
 address owner;
 mapping (address => uint) assets;

 /* This runs when the contract is executed */
 function Accounting(address _owner) {
 owner = _owner;
 }

 /* Sending funds to a contract */
 function invest() returns (string) {
 if (assets[msg.sender].initialized()) { throw; }
 assets[msg.sender] = msg.value;
 return "You have given us your money";
 }
}

Ethereum's Solidity

• JavaScript-like syntax

• Calling a function = sending funds

• General recursion and loops

• Reflection, dynamic contract creation

• Lots of implicit conventions

• No formal semantics

Sending a Message or Calling?
contract Accounting {
 /* Other functions */

 /* Sending funds to a contract */
 function invest() returns (string) {
 if (assets[msg.sender].initialized()) { throw; }
 assets[msg.sender] = msg.value;
 return "You have given us your money";
 }

 function withdrawBalance() {
 uint amount = assets[msg.sender];
 if (msg.sender.call.value(amount)() == false) {
 throw;
 }
 assets[msg.sender] = 0;
 }
}

contract Accounting {
 /* Other functions */

 /* Sending funds to a contract */
 function invest() returns (string) {
 if (assets[msg.sender].initialized()) { throw; }
 assets[msg.sender] = msg.value;
 return "You have given us your money";
 }

 function withdrawBalance() {
 uint amount = assets[msg.sender];
 if (msg.sender.call.value(amount)() == false) {
 throw;
 }
 assets[msg.sender] = 0;
 }
}

Can reenter and 
withdraw again

Sending a Message or Calling?

Smart Contracts in a Nutshell

Computations

State Manipulation

Effects

Communication

self-explanatory

changing contract's fields

accepting funds, logging events

sending funds, calling other contracts

Computations

State Manipulation

Effects

Communication

Computations

State Manipulation Effects

Communication

Verified Specification

Verified Specification

Verified Specification

Computations

State Manipulation Effects

Communication

Verified Specification

Verified Specification

Verified Specification

abstraction level

Computations

State Manipulation Effects

Communication

Verified Specification

Verified Specification

Scilla

Computations

State Manipulation Effects

Communication

Verified Specification

Verified Specification

Scilla
Smart Contract Intermediate-Level Language

Principled model for computations

Not Turing-complete

Explicit Effects

Communication

System F with small extensions

Only primitive recursion/iteration

State-transformer semantics

Contracts are autonomous actors

Types

S�����: Syntax and Semantics
[Version 0.1]

May 15, 2018

Zilliqa Team
Singapore and United Kingdom

zilliqa.com

Abstract
Ths document describes the language grammar and runtime seman-
tics of S�����, an intermediate-level language for smart contracts
executed on top of Z������ blockchain. In addition to the key lan-
guage components, we also outline the static typing discipline for
S�����, as well as its translation to C�� for machine-assisted formal
veri�cation of smart contracts.

1 Introduction
S����� programming language has been proposed to tackle the chal-
lenge of constructing provably correct smart contracts on Z������
blockchain [11]. In this manuscript we present its syntax, static,
and dynamic semantics, as well as describe its model of interaction
with a blockchain targeting multi-shard execution. We split the
description of S�����’s syntax into several fragments, focusing on
several orthogonal programming aspects, outlined in the corre-
sponding sections: types and pure expressions (Section 2), e�ectful
computations (Section 3), and, communication primitives (Section 4),
culminating with the de�nition of the top-level contract structure in
Section 4.3. The remaining sections explain S�����’s lexical syntax
(Section 5) and serialisation for data types and messages 6.

2 ���: Pure Fragment of S�����
We start by presenting the language ��� of the pure expression frag-
ment of S�����, wich is very much inspired by the Girard-Reynolds’
System F [3, 9] (aka polymorphic lambda-calculus) with elements
of Standard ML [5], the C��� language of the Glasgow Haskell
Compiler [4, 10] and Coq’s Calculus of Inductive Constructions [2].
We have chosen System F as our expression language for the it
features parametric polymorphism (i.e., allows one to construct
reusable de�nitions) and also enjoys strong normalisation (i.e., eval-
uation of expressions written in it always terminates). A limited
support for structural (primitive) recursion in ��� for a number of
embedded algebraic data types is provided via built-in recursion
principles (cf. Section 2.2.4).

2.1 Types
Every expression in ��� has a type, capturing its structural proper-
ties. Every well-formed expression has a type, which can be stati-
cally checked at the compilation type, such a type determines a set
of values the expression can be evaluated to at run-time. Figure 1
presents basic data types of the language, which are either primi-
tive (P) or parametric, i.e., generic, T , S , which might include type
variables � , � . The standard notation hT i denotes a possibly empty
sequence of (possibly similar) occurrences of T , i.e., T1, . . . ,Tn . We
denote the union of primitive and fully instantiated (i.e., containing
no type variables) types as ground.

Notational conventions. In Figure 1 and further in this document,
P ranges over built-in primitive types, T , S range over arbitrary

Primitive type P ::= Int Integer
String String
Hash Hash
BNum Block number
Address Account address

Type T , S ::= P primitive type
Map P T map
Message message
T -> S value function
D hTk i instantiated data type
� type variable
forall �.T polymorphic function

Figure 1. Syntax of ��� types.

types, � , � range over type variables, D ranges over type con-
structors. The notation hxk i stands for a sequence of one or more
occurrences of x , indexed by k . The notation hxi is a shortcut of
zero or one occurrence of x . In the actual program syntax, paren-
theses (...) are used to disambiguate nested applications of type
constructors.

2.1.1 Primitive data types
A selection of primitive data types is standard for a functional ML-
style language. Integers are signed and range fromMININT = �231
toMAXINT = 231�1. In addition to that, the Int data type includes
two special values, Inf,�Inf, andNaN thatmake basic operations on
it totally de�ned, as, e.g., in the case 0/0 = Inf, and Inf+�Inf = NaN.
The datatype of characters uses two bytes, similarly to integers,
and, thus, can encode UTF-16 character set. Other primitive types
include block and transaction hashes, BNum and btime for block
number and time, correspondingly,1 thash for transaction hashes
and Hash for general-purpose hash values, obtained by means of a
standard SHA3 256 implementation.

2.1.2 Parametric types
In addition to primitive types, we provide a a �xed number of
parametric (higher-order) types that come with a number of con-
structors and can be used to construct a variety of data structure to
be operated in a purely functional style [6].

The initial language proposal includes ML-style pairs (prod-
uct type) and choices (tagged sum type), as well lists and options,
encoded as a syntactic sugar on top of the former two higher-
order types. Each of such types is parameterised by either one
or more type variables (referred to as T , S,R), which are all as-
sumed to be eventually instantiated via some is a ground types.

1Their precise implementation is to be de�ned later, although they come as opaque
types with a �xed set of operations, such as comparison for ordering.

Expressions (pure)
Term Meaning Description

Expression e ::= f simple expression
let x h: T i = f in e let-form

Simple expression f ::= l primitive literal
x variable
{ hentryik } Message
fun (x : T) => e function
builtin b hxk i built-in application
x hxk i application
tfun � => e type function
@x T type instantiation
C h {hTk i} i hxk i constructor instantiation
match x with h | selk i end pattern matching

Selector sel ::= pat => e
Pattern pat ::= x variable binding

C hpatk i constructor pattern
(pat) paranthesized pattern
_ wildcard pattern

Message entrry entry ::= b : x
Name b identi�er

Figure 2. Syntax of ��� expressions.

Operation Symbol Parameters Result type Result Remarks

Structural equality eq (x : T) (� : T) bool x = � T is any ground type
Integer addition add (x : Int) (� : Int) Int x b+ � cf. details in §2.2.2
Integer subtraction sub (x : Int) (� : Int) Int x b� � cf. details in §2.2.2
Integer multiplication mult (x : Int) (� : Int) Int x b⇥ � cf. details in §2.2.2
Integer division div (x : Int) (� : Int) Int x b/ � cf. details in §2.2.2
Integer remainder mod (x : Int) (� : Int) Int x dmod � cf. details in §2.2.2
Integer comparison lt (x : Int) (� : Int) bool x < � cf. details in §2.2.2
Hashing hash (x : T) Hash SHA3 256 hash
Time comparison tlt (x : btime) (� : btime) bool x < �
Block # comparison blt (x : BNum) (� : BNum) bool x < �

Type conversions

nat to Int conversion toint (x : nat) Option Int
Some x as Int if x MAXINT
None otherwise

Int to nat conversion tonat (x : Int) Option nat
Some x as nat if x � 0
None otherwise

Figure 3. Built-in operations and conversions on primitive data types.

2.3 Static Semantics
(Ilya: Standard typing rules for System F)

2.4 Operational Semantics for ��� Expressions
(Ilya: TODO: CEK machine comes here)

2.5 Examples
Let us now see several examples of actual programs written in ���.

(Ilya: TODO: provide example programs.)

3 Computations and Commands
The following categories are present, all commands are in the CPS
style, ending via either send or return.

• Modifying contract �elds;
• Interacting with the blockchain (what are the primitives)?
• try/catch
• Exceptions;
• Events;
• Accepting funds (inverse of payable);
• Sending funds;

3

Structural Recursion in ScillaData type Constructors and their types Recursor and its type

unit U : unit unit_rec : forall �.� -> unit -> �

bool
True : bool

bool_rec : forall �.� -> � -> bool -> �
False : bool

nat
Zero : nat

nat_rec : forall �.� -> (nat -> � -> �) -> nat -> �
Succ : nat -> nat

pair T S And : forall � � . � -> � -> pair � � pair_rec : forall � � � . (� -> � -> �) -> pair � � -> �

either T S Left : forall �. � -> either �
either_rec : forall � � � . (� -> �) -> (� -> �) -> either � � -> �

Right : forall �. � -> either �

option T Some : forall �. � -> option �
option_rec : forall �. forall �.(� -> �) -> � -> option � -> �

None : forall �. option �

list T Nil : forall �. list �
list_rec : forall � � . � -> (� -> list � -> � -> �) -> list �

Cons : forall �. � -> list � -> list �

Figure 4. Built-in Algebraic Data Types (ADTs), their constructors and recursion principles.

Figure 5. Runtime semantics of ���.

1 let list_product =
2 fun (ls : List Int) => fun (acc : Int) =>
3 let iter =
4 fun (h : Int) => fun (t : List Int) => fun (res : Int) =>
5 let zero = 0 in
6 let b = builtin eq h zero in
7 match b with
8 | True => 0
9 | False => builtin mult h res
10 end
11 in
12 let rec_nat = @ list_rec Nat in
13 let rec_nat_nat = @ rec_nat Nat in
14 rec_nat_nat acc iter ls

Figure 6. Product of integer numbers in a List ls.

1 let fib = fun (n : Nat) =>
2 let iter_nat = @ nat_rec (Pair Nat Nat) in
3 let iter_fun =
4 fun (n: Nat) => fun (res : Pair Nat Nat) =>
5 match res with
6 | And x y => let z = add x y in
7 And {Nat Nat} z x
8 end
9 in
10 let zero = Zero in
11 let one = Succ zero in
12 let init_val = And {Nat Nat} one zero in
13 let res = iter_nat init_val iter_fun n in
14 fst res

Figure 7. Fibonacci numbers.

All this will be manifested in a type-and-e�ect system, keeping
track of the funny things.

(Ilya: Do we need anything else?)

4 Communication and Transitions
4.1 Messages
(Ilya: Emphasize the sending of several messages)

1 let insert_sort =
2 fun (ls : List Int) =>
3 let true = True in
4 let false = False in
5 let rec_int = @ list_rec Int in
6 let rec_int_int = @ rec_int Int in
7 let rec_int_Pair = @ rec_int (Pair Bool (List Int)) in
8 let nil_int = Nil {Int} in
9 let sink_down =
10 fun (e : Int) => fun (ls : List Int) =>
11 let init = And {Bool (List Int)} false nil_int in
12 let iter1 =
13 fun (h : Pair Bool (List int)) =>
14 fun (t : List int) =>
15 fun (res : Pair Bool (List int)) =>
16 let b = fst res in
17 let rest = snd res in
18 match b with
19 | True =>
20 let z = Cons {Int} h rest in
21 And {Bool (List Int)} true z
22 | False =>
23 let bl = builtin lt h e in
24 match bl with
25 | True =>
26 let z = Cons {Int} e rest in
27 let z2 = Cons {Int} h z in
28 And {Bool (List Int)} true z2
29 | False =>
30 let z = Cons {Int} h rest in
31 And {Bool (List Int)} false z
32 end
33 end
34 in
35 let res1 = rec_int_Pair init iter1 ls in
36 let b0 = fst res1 in
37 let ls1 = snd res1 in
38 match b0 with
39 | True => ls1
40 | False => Cons {int} e ls1
41 end
42 in
43 let iter2 = fun (h : Int) => fun (t : List Int) =>
44 fun (res : Int) => sink_down h res
45 in
46 rec_int_int iter2 nil_int ls

Figure 8. Insertion sort of a list in ���.

(Ilya: Messages come with typed components, so there might be
no in-contract failure due to the ill-typed message! This is how we
keep expressions pure.)

4

Natural numbers (not Ints!)

Result type

Value for 0

| {z }

constructing the next value

number of
iterations

final result

Example: Fibonacci Numbers

Data type Constructors and their types Recursor and its type

unit U : unit unit_rec : forall �.� -> unit -> �

bool
True : bool

bool_rec : forall �.� -> � -> bool -> �
False : bool

nat
Zero : nat

nat_rec : forall �.� -> (nat -> � -> �) -> nat -> �
Succ : nat -> nat

pair T S And : forall � � . � -> � -> pair � � pair_rec : forall � � � . (� -> � -> �) -> pair � � -> �

either T S Left : forall �. � -> either �
either_rec : forall � � � . (� -> �) -> (� -> �) -> either � � -> �

Right : forall �. � -> either �

option T Some : forall �. � -> option �
option_rec : forall �. forall �.(� -> �) -> � -> option � -> �

None : forall �. option �

list T Nil : forall �. list �
list_rec : forall � � . � -> (� -> list � -> � -> �) -> �

Cons : forall �. � -> list � -> list �

Figure 4. Built-in Algebraic Data Types (ADTs), their constructors and recursion principles.

Figure 5. Runtime semantics of ���.

1 let list_product =
2 fun (ls : List Int) => fun (acc : Int) =>
3 let iter =
4 fun (h : Int) => fun (t : List Int) => fun (res : Int) =>
5 let zero = 0 in
6 let b = builtin eq h zero in
7 match b with
8 | True => 0
9 | False => builtin mult h res
10 end
11 in
12 let rec_nat = @ list_rec Int in
13 let rec_nat_nat = @ rec_nat Int in
14 rec_nat_nat acc iter ls

Figure 6. Product of integer numbers in a List ls.

1 let fib = fun (n : Nat) =>
2 let iter_nat = @ nat_rec (Pair Int Int) in
3 let iter_fun =
4 fun (n: Nat) => fun (res : Pair Int Int) =>
5 match res with
6 | And x y => let z = builtin add x y in
7 And {Int Int} z x
8 end
9 in
10 let zero = 0 in
11 let one = 1 in
12 let init_val = And {Int Int} one zero in
13 let res = iter_nat init_val iter_fun n in
14 fst res

Figure 7. Fibonacci numbers.

All this will be manifested in a type-and-e�ect system, keeping
track of the funny things.

(Ilya: Do we need anything else?)

4 Communication and Transitions
4.1 Messages
(Ilya: Emphasize the sending of several messages)

1 let insert_sort =
2 fun (ls : List Int) =>
3 let true = True in
4 let false = False in
5 let rec_int = @ list_rec Int in
6 let rec_int_int = @ rec_int Int in
7 let rec_int_Pair = @ rec_int (Pair Bool (List Int)) in
8 let nil_int = Nil {Int} in
9 let sink_down =
10 fun (e : Int) => fun (ls : List Int) =>
11 let init = And {Bool (List Int)} false nil_int in
12 let iter1 =
13 fun (h : Pair Bool (List int)) =>
14 fun (t : List int) =>
15 fun (res : Pair Bool (List int)) =>
16 let b = fst res in
17 let rest = snd res in
18 match b with
19 | True =>
20 let z = Cons {Int} h rest in
21 And {Bool (List Int)} true z
22 | False =>
23 let bl = builtin lt h e in
24 match bl with
25 | True =>
26 let z = Cons {Int} e rest in
27 let z2 = Cons {Int} h z in
28 And {Bool (List Int)} true z2
29 | False =>
30 let z = Cons {Int} h rest in
31 And {Bool (List Int)} false z
32 end
33 end
34 in
35 let res1 = rec_int_Pair init iter1 ls in
36 let b0 = fst res1 in
37 let ls1 = snd res1 in
38 match b0 with
39 | True => ls1
40 | False => Cons {int} e ls1
41 end
42 in
43 let iter2 = fun (h : Int) => fun (t : List Int) =>
44 fun (res : Int) => sink_down h res
45 in
46 rec_int_int iter2 nil_int ls

Figure 8. Insertion sort of a list in ���.

(Ilya: Messages come with typed components, so there might be
no in-contract failure due to the ill-typed message! This is how we
keep expressions pure.)

4

Example: Fibonacci Numbers

Data type Constructors and their types Recursor and its type

unit U : unit unit_rec : forall �.� -> unit -> �

bool
True : bool

bool_rec : forall �.� -> � -> bool -> �
False : bool

nat
Zero : nat

nat_rec : forall �.� -> (nat -> � -> �) -> nat -> �
Succ : nat -> nat

pair T S And : forall � � . � -> � -> pair � � pair_rec : forall � � � . (� -> � -> �) -> pair � � -> �

either T S Left : forall �. � -> either �
either_rec : forall � � � . (� -> �) -> (� -> �) -> either � � -> �

Right : forall �. � -> either �

option T Some : forall �. � -> option �
option_rec : forall �. forall �.(� -> �) -> � -> option � -> �

None : forall �. option �

list T Nil : forall �. list �
list_rec : forall � � . � -> (� -> list � -> � -> �) -> �

Cons : forall �. � -> list � -> list �

Figure 4. Built-in Algebraic Data Types (ADTs), their constructors and recursion principles.

Figure 5. Runtime semantics of ���.

1 let list_product =
2 fun (ls : List Int) => fun (acc : Int) =>
3 let iter =
4 fun (h : Int) => fun (t : List Int) => fun (res : Int) =>
5 let zero = 0 in
6 let b = builtin eq h zero in
7 match b with
8 | True => 0
9 | False => builtin mult h res
10 end
11 in
12 let rec_nat = @ list_rec Int in
13 let rec_nat_nat = @ rec_nat Int in
14 rec_nat_nat acc iter ls

Figure 6. Product of integer numbers in a List ls.

1 let fib = fun (n : Nat) =>
2 let iter_nat = @ nat_rec (Pair Int Int) in
3 let iter_fun =
4 fun (n: Nat) => fun (res : Pair Int Int) =>
5 match res with
6 | And x y => let z = builtin add x y in
7 And {Int Int} z x
8 end
9 in
10 let zero = 0 in
11 let one = 1 in
12 let init_val = And {Int Int} one zero in
13 let res = iter_nat init_val iter_fun n in
14 fst res

Figure 7. Fibonacci numbers.

All this will be manifested in a type-and-e�ect system, keeping
track of the funny things.

(Ilya: Do we need anything else?)

4 Communication and Transitions
4.1 Messages
(Ilya: Emphasize the sending of several messages)

1 let insert_sort =
2 fun (ls : List Int) =>
3 let true = True in
4 let false = False in
5 let rec_int = @ list_rec Int in
6 let rec_int_int = @ rec_int Int in
7 let rec_int_Pair = @ rec_int (Pair Bool (List Int)) in
8 let nil_int = Nil {Int} in
9 let sink_down =
10 fun (e : Int) => fun (ls : List Int) =>
11 let init = And {Bool (List Int)} false nil_int in
12 let iter1 =
13 fun (h : Pair Bool (List int)) =>
14 fun (t : List int) =>
15 fun (res : Pair Bool (List int)) =>
16 let b = fst res in
17 let rest = snd res in
18 match b with
19 | True =>
20 let z = Cons {Int} h rest in
21 And {Bool (List Int)} true z
22 | False =>
23 let bl = builtin lt h e in
24 match bl with
25 | True =>
26 let z = Cons {Int} e rest in
27 let z2 = Cons {Int} h z in
28 And {Bool (List Int)} true z2
29 | False =>
30 let z = Cons {Int} h rest in
31 And {Bool (List Int)} false z
32 end
33 end
34 in
35 let res1 = rec_int_Pair init iter1 ls in
36 let b0 = fst res1 in
37 let ls1 = snd res1 in
38 match b0 with
39 | True => ls1
40 | False => Cons {int} e ls1
41 end
42 in
43 let iter2 = fun (h : Int) => fun (t : List Int) =>
44 fun (res : Int) => sink_down h res
45 in
46 rec_int_int iter2 nil_int ls

Figure 8. Insertion sort of a list in ���.

(Ilya: Messages come with typed components, so there might be
no in-contract failure due to the ill-typed message! This is how we
keep expressions pure.)

4

Value for 0: (1, 0)

Example: Fibonacci Numbers

Data type Constructors and their types Recursor and its type

unit U : unit unit_rec : forall �.� -> unit -> �

bool
True : bool

bool_rec : forall �.� -> � -> bool -> �
False : bool

nat
Zero : nat

nat_rec : forall �.� -> (nat -> � -> �) -> nat -> �
Succ : nat -> nat

pair T S And : forall � � . � -> � -> pair � � pair_rec : forall � � � . (� -> � -> �) -> pair � � -> �

either T S Left : forall �. � -> either �
either_rec : forall � � � . (� -> �) -> (� -> �) -> either � � -> �

Right : forall �. � -> either �

option T Some : forall �. � -> option �
option_rec : forall �. forall �.(� -> �) -> � -> option � -> �

None : forall �. option �

list T Nil : forall �. list �
list_rec : forall � � . � -> (� -> list � -> � -> �) -> �

Cons : forall �. � -> list � -> list �

Figure 4. Built-in Algebraic Data Types (ADTs), their constructors and recursion principles.

Figure 5. Runtime semantics of ���.

1 let list_product =
2 fun (ls : List Int) => fun (acc : Int) =>
3 let iter =
4 fun (h : Int) => fun (t : List Int) => fun (res : Int) =>
5 let zero = 0 in
6 let b = builtin eq h zero in
7 match b with
8 | True => 0
9 | False => builtin mult h res
10 end
11 in
12 let rec_nat = @ list_rec Int in
13 let rec_nat_nat = @ rec_nat Int in
14 rec_nat_nat acc iter ls

Figure 6. Product of integer numbers in a List ls.

1 let fib = fun (n : Nat) =>
2 let iter_nat = @ nat_rec (Pair Int Int) in
3 let iter_fun =
4 fun (n: Nat) => fun (res : Pair Int Int) =>
5 match res with
6 | And x y => let z = builtin add x y in
7 And {Int Int} z x
8 end
9 in
10 let zero = 0 in
11 let one = 1 in
12 let init_val = And {Int Int} one zero in
13 let res = iter_nat init_val iter_fun n in
14 fst res

Figure 7. Fibonacci numbers.

All this will be manifested in a type-and-e�ect system, keeping
track of the funny things.

(Ilya: Do we need anything else?)

4 Communication and Transitions
4.1 Messages
(Ilya: Emphasize the sending of several messages)

1 let insert_sort =
2 fun (ls : List Int) =>
3 let true = True in
4 let false = False in
5 let rec_int = @ list_rec Int in
6 let rec_int_int = @ rec_int Int in
7 let rec_int_Pair = @ rec_int (Pair Bool (List Int)) in
8 let nil_int = Nil {Int} in
9 let sink_down =
10 fun (e : Int) => fun (ls : List Int) =>
11 let init = And {Bool (List Int)} false nil_int in
12 let iter1 =
13 fun (h : Pair Bool (List int)) =>
14 fun (t : List int) =>
15 fun (res : Pair Bool (List int)) =>
16 let b = fst res in
17 let rest = snd res in
18 match b with
19 | True =>
20 let z = Cons {Int} h rest in
21 And {Bool (List Int)} true z
22 | False =>
23 let bl = builtin lt h e in
24 match bl with
25 | True =>
26 let z = Cons {Int} e rest in
27 let z2 = Cons {Int} h z in
28 And {Bool (List Int)} true z2
29 | False =>
30 let z = Cons {Int} h rest in
31 And {Bool (List Int)} false z
32 end
33 end
34 in
35 let res1 = rec_int_Pair init iter1 ls in
36 let b0 = fst res1 in
37 let ls1 = snd res1 in
38 match b0 with
39 | True => ls1
40 | False => Cons {int} e ls1
41 end
42 in
43 let iter2 = fun (h : Int) => fun (t : List Int) =>
44 fun (res : Int) => sink_down h res
45 in
46 rec_int_int iter2 nil_int ls

Figure 8. Insertion sort of a list in ���.

(Ilya: Messages come with typed components, so there might be
no in-contract failure due to the ill-typed message! This is how we
keep expressions pure.)

4

Iteration

Example: Fibonacci Numbers

Data type Constructors and their types Recursor and its type

unit U : unit unit_rec : forall �.� -> unit -> �

bool
True : bool

bool_rec : forall �.� -> � -> bool -> �
False : bool

nat
Zero : nat

nat_rec : forall �.� -> (nat -> � -> �) -> nat -> �
Succ : nat -> nat

pair T S And : forall � � . � -> � -> pair � � pair_rec : forall � � � . (� -> � -> �) -> pair � � -> �

either T S Left : forall �. � -> either �
either_rec : forall � � � . (� -> �) -> (� -> �) -> either � � -> �

Right : forall �. � -> either �

option T Some : forall �. � -> option �
option_rec : forall �. forall �.(� -> �) -> � -> option � -> �

None : forall �. option �

list T Nil : forall �. list �
list_rec : forall � � . � -> (� -> list � -> � -> �) -> �

Cons : forall �. � -> list � -> list �

Figure 4. Built-in Algebraic Data Types (ADTs), their constructors and recursion principles.

Figure 5. Runtime semantics of ���.

1 let list_product =
2 fun (ls : List Int) => fun (acc : Int) =>
3 let iter =
4 fun (h : Int) => fun (t : List Int) => fun (res : Int) =>
5 let zero = 0 in
6 let b = builtin eq h zero in
7 match b with
8 | True => 0
9 | False => builtin mult h res
10 end
11 in
12 let rec_nat = @ list_rec Int in
13 let rec_nat_nat = @ rec_nat Int in
14 rec_nat_nat acc iter ls

Figure 6. Product of integer numbers in a List ls.

1 let fib = fun (n : Nat) =>
2 let iter_nat = @ nat_rec (Pair Int Int) in
3 let iter_fun =
4 fun (n: Nat) => fun (res : Pair Int Int) =>
5 match res with
6 | And x y => let z = builtin add x y in
7 And {Int Int} z x
8 end
9 in
10 let zero = 0 in
11 let one = 1 in
12 let init_val = And {Int Int} one zero in
13 let res = iter_nat init_val iter_fun n in
14 fst res

Figure 7. Fibonacci numbers.

All this will be manifested in a type-and-e�ect system, keeping
track of the funny things.

(Ilya: Do we need anything else?)

4 Communication and Transitions
4.1 Messages
(Ilya: Emphasize the sending of several messages)

1 let insert_sort =
2 fun (ls : List Int) =>
3 let true = True in
4 let false = False in
5 let rec_int = @ list_rec Int in
6 let rec_int_int = @ rec_int Int in
7 let rec_int_Pair = @ rec_int (Pair Bool (List Int)) in
8 let nil_int = Nil {Int} in
9 let sink_down =
10 fun (e : Int) => fun (ls : List Int) =>
11 let init = And {Bool (List Int)} false nil_int in
12 let iter1 =
13 fun (h : Pair Bool (List int)) =>
14 fun (t : List int) =>
15 fun (res : Pair Bool (List int)) =>
16 let b = fst res in
17 let rest = snd res in
18 match b with
19 | True =>
20 let z = Cons {Int} h rest in
21 And {Bool (List Int)} true z
22 | False =>
23 let bl = builtin lt h e in
24 match bl with
25 | True =>
26 let z = Cons {Int} e rest in
27 let z2 = Cons {Int} h z in
28 And {Bool (List Int)} true z2
29 | False =>
30 let z = Cons {Int} h rest in
31 And {Bool (List Int)} false z
32 end
33 end
34 in
35 let res1 = rec_int_Pair init iter1 ls in
36 let b0 = fst res1 in
37 let ls1 = snd res1 in
38 match b0 with
39 | True => ls1
40 | False => Cons {int} e ls1
41 end
42 in
43 let iter2 = fun (h : Int) => fun (t : List Int) =>
44 fun (res : Int) => sink_down h res
45 in
46 rec_int_int iter2 nil_int ls

Figure 8. Insertion sort of a list in ���.

(Ilya: Messages come with typed components, so there might be
no in-contract failure due to the ill-typed message! This is how we
keep expressions pure.)

4

(x, y) → (x + y, x)

Example: Fibonacci Numbers

Data type Constructors and their types Recursor and its type

unit U : unit unit_rec : forall �.� -> unit -> �

bool
True : bool

bool_rec : forall �.� -> � -> bool -> �
False : bool

nat
Zero : nat

nat_rec : forall �.� -> (nat -> � -> �) -> nat -> �
Succ : nat -> nat

pair T S And : forall � � . � -> � -> pair � � pair_rec : forall � � � . (� -> � -> �) -> pair � � -> �

either T S Left : forall �. � -> either �
either_rec : forall � � � . (� -> �) -> (� -> �) -> either � � -> �

Right : forall �. � -> either �

option T Some : forall �. � -> option �
option_rec : forall �. forall �.(� -> �) -> � -> option � -> �

None : forall �. option �

list T Nil : forall �. list �
list_rec : forall � � . � -> (� -> list � -> � -> �) -> �

Cons : forall �. � -> list � -> list �

Figure 4. Built-in Algebraic Data Types (ADTs), their constructors and recursion principles.

Figure 5. Runtime semantics of ���.

1 let list_product =
2 fun (ls : List Int) => fun (acc : Int) =>
3 let iter =
4 fun (h : Int) => fun (t : List Int) => fun (res : Int) =>
5 let zero = 0 in
6 let b = builtin eq h zero in
7 match b with
8 | True => 0
9 | False => builtin mult h res
10 end
11 in
12 let rec_nat = @ list_rec Int in
13 let rec_nat_nat = @ rec_nat Int in
14 rec_nat_nat acc iter ls

Figure 6. Product of integer numbers in a List ls.

1 let fib = fun (n : Nat) =>
2 let iter_nat = @ nat_rec (Pair Int Int) in
3 let iter_fun =
4 fun (n: Nat) => fun (res : Pair Int Int) =>
5 match res with
6 | And x y => let z = builtin add x y in
7 And {Int Int} z x
8 end
9 in
10 let zero = 0 in
11 let one = 1 in
12 let init_val = And {Int Int} one zero in
13 let res = iter_nat init_val iter_fun n in
14 fst res

Figure 7. Fibonacci numbers.

All this will be manifested in a type-and-e�ect system, keeping
track of the funny things.

(Ilya: Do we need anything else?)

4 Communication and Transitions
4.1 Messages
(Ilya: Emphasize the sending of several messages)

1 let insert_sort =
2 fun (ls : List Int) =>
3 let true = True in
4 let false = False in
5 let rec_int = @ list_rec Int in
6 let rec_int_int = @ rec_int Int in
7 let rec_int_Pair = @ rec_int (Pair Bool (List Int)) in
8 let nil_int = Nil {Int} in
9 let sink_down =
10 fun (e : Int) => fun (ls : List Int) =>
11 let init = And {Bool (List Int)} false nil_int in
12 let iter1 =
13 fun (h : Pair Bool (List int)) =>
14 fun (t : List int) =>
15 fun (res : Pair Bool (List int)) =>
16 let b = fst res in
17 let rest = snd res in
18 match b with
19 | True =>
20 let z = Cons {Int} h rest in
21 And {Bool (List Int)} true z
22 | False =>
23 let bl = builtin lt h e in
24 match bl with
25 | True =>
26 let z = Cons {Int} e rest in
27 let z2 = Cons {Int} h z in
28 And {Bool (List Int)} true z2
29 | False =>
30 let z = Cons {Int} h rest in
31 And {Bool (List Int)} false z
32 end
33 end
34 in
35 let res1 = rec_int_Pair init iter1 ls in
36 let b0 = fst res1 in
37 let ls1 = snd res1 in
38 match b0 with
39 | True => ls1
40 | False => Cons {int} e ls1
41 end
42 in
43 let iter2 = fun (h : Int) => fun (t : List Int) =>
44 fun (res : Int) => sink_down h res
45 in
46 rec_int_int iter2 nil_int ls

Figure 8. Insertion sort of a list in ���.

(Ilya: Messages come with typed components, so there might be
no in-contract failure due to the ill-typed message! This is how we
keep expressions pure.)

4

The result of iteration
is a pair of integers

Example: Fibonacci Numbers

Data type Constructors and their types Recursor and its type

unit U : unit unit_rec : forall �.� -> unit -> �

bool
True : bool

bool_rec : forall �.� -> � -> bool -> �
False : bool

nat
Zero : nat

nat_rec : forall �.� -> (nat -> � -> �) -> nat -> �
Succ : nat -> nat

pair T S And : forall � � . � -> � -> pair � � pair_rec : forall � � � . (� -> � -> �) -> pair � � -> �

either T S Left : forall �. � -> either �
either_rec : forall � � � . (� -> �) -> (� -> �) -> either � � -> �

Right : forall �. � -> either �

option T Some : forall �. � -> option �
option_rec : forall �. forall �.(� -> �) -> � -> option � -> �

None : forall �. option �

list T Nil : forall �. list �
list_rec : forall � � . � -> (� -> list � -> � -> �) -> �

Cons : forall �. � -> list � -> list �

Figure 4. Built-in Algebraic Data Types (ADTs), their constructors and recursion principles.

Figure 5. Runtime semantics of ���.

1 let list_product =
2 fun (ls : List Int) => fun (acc : Int) =>
3 let iter =
4 fun (h : Int) => fun (t : List Int) => fun (res : Int) =>
5 let zero = 0 in
6 let b = builtin eq h zero in
7 match b with
8 | True => 0
9 | False => builtin mult h res
10 end
11 in
12 let rec_nat = @ list_rec Int in
13 let rec_nat_nat = @ rec_nat Int in
14 rec_nat_nat acc iter ls

Figure 6. Product of integer numbers in a List ls.

1 let fib = fun (n : Nat) =>
2 let iter_nat = @ nat_rec (Pair Int Int) in
3 let iter_fun =
4 fun (n: Nat) => fun (res : Pair Int Int) =>
5 match res with
6 | And x y => let z = builtin add x y in
7 And {Int Int} z x
8 end
9 in
10 let zero = 0 in
11 let one = 1 in
12 let init_val = And {Int Int} one zero in
13 let res = iter_nat init_val iter_fun n in
14 fst res

Figure 7. Fibonacci numbers.

All this will be manifested in a type-and-e�ect system, keeping
track of the funny things.

(Ilya: Do we need anything else?)

4 Communication and Transitions
4.1 Messages
(Ilya: Emphasize the sending of several messages)

1 let insert_sort =
2 fun (ls : List Int) =>
3 let true = True in
4 let false = False in
5 let rec_int = @ list_rec Int in
6 let rec_int_int = @ rec_int Int in
7 let rec_int_Pair = @ rec_int (Pair Bool (List Int)) in
8 let nil_int = Nil {Int} in
9 let sink_down =
10 fun (e : Int) => fun (ls : List Int) =>
11 let init = And {Bool (List Int)} false nil_int in
12 let iter1 =
13 fun (h : Pair Bool (List int)) =>
14 fun (t : List int) =>
15 fun (res : Pair Bool (List int)) =>
16 let b = fst res in
17 let rest = snd res in
18 match b with
19 | True =>
20 let z = Cons {Int} h rest in
21 And {Bool (List Int)} true z
22 | False =>
23 let bl = builtin lt h e in
24 match bl with
25 | True =>
26 let z = Cons {Int} e rest in
27 let z2 = Cons {Int} h z in
28 And {Bool (List Int)} true z2
29 | False =>
30 let z = Cons {Int} h rest in
31 And {Bool (List Int)} false z
32 end
33 end
34 in
35 let res1 = rec_int_Pair init iter1 ls in
36 let b0 = fst res1 in
37 let ls1 = snd res1 in
38 match b0 with
39 | True => ls1
40 | False => Cons {int} e ls1
41 end
42 in
43 let iter2 = fun (h : Int) => fun (t : List Int) =>
44 fun (res : Int) => sink_down h res
45 in
46 rec_int_int iter2 nil_int ls

Figure 8. Insertion sort of a list in ���.

(Ilya: Messages come with typed components, so there might be
no in-contract failure due to the ill-typed message! This is how we
keep expressions pure.)

4

Iterate n times

Example: Fibonacci Numbers

Data type Constructors and their types Recursor and its type

unit U : unit unit_rec : forall �.� -> unit -> �

bool
True : bool

bool_rec : forall �.� -> � -> bool -> �
False : bool

nat
Zero : nat

nat_rec : forall �.� -> (nat -> � -> �) -> nat -> �
Succ : nat -> nat

pair T S And : forall � � . � -> � -> pair � � pair_rec : forall � � � . (� -> � -> �) -> pair � � -> �

either T S Left : forall �. � -> either �
either_rec : forall � � � . (� -> �) -> (� -> �) -> either � � -> �

Right : forall �. � -> either �

option T Some : forall �. � -> option �
option_rec : forall �. forall �.(� -> �) -> � -> option � -> �

None : forall �. option �

list T Nil : forall �. list �
list_rec : forall � � . � -> (� -> list � -> � -> �) -> �

Cons : forall �. � -> list � -> list �

Figure 4. Built-in Algebraic Data Types (ADTs), their constructors and recursion principles.

Figure 5. Runtime semantics of ���.

1 let list_product =
2 fun (ls : List Int) => fun (acc : Int) =>
3 let iter =
4 fun (h : Int) => fun (t : List Int) => fun (res : Int) =>
5 let zero = 0 in
6 let b = builtin eq h zero in
7 match b with
8 | True => 0
9 | False => builtin mult h res
10 end
11 in
12 let rec_nat = @ list_rec Int in
13 let rec_nat_nat = @ rec_nat Int in
14 rec_nat_nat acc iter ls

Figure 6. Product of integer numbers in a List ls.

1 let fib = fun (n : Nat) =>
2 let iter_nat = @ nat_rec (Pair Int Int) in
3 let iter_fun =
4 fun (n: Nat) => fun (res : Pair Int Int) =>
5 match res with
6 | And x y => let z = builtin add x y in
7 And {Int Int} z x
8 end
9 in
10 let zero = 0 in
11 let one = 1 in
12 let init_val = And {Int Int} one zero in
13 let res = iter_nat init_val iter_fun n in
14 fst res

Figure 7. Fibonacci numbers.

All this will be manifested in a type-and-e�ect system, keeping
track of the funny things.

(Ilya: Do we need anything else?)

4 Communication and Transitions
4.1 Messages
(Ilya: Emphasize the sending of several messages)

1 let insert_sort =
2 fun (ls : List Int) =>
3 let true = True in
4 let false = False in
5 let rec_int = @ list_rec Int in
6 let rec_int_int = @ rec_int Int in
7 let rec_int_Pair = @ rec_int (Pair Bool (List Int)) in
8 let nil_int = Nil {Int} in
9 let sink_down =
10 fun (e : Int) => fun (ls : List Int) =>
11 let init = And {Bool (List Int)} false nil_int in
12 let iter1 =
13 fun (h : Pair Bool (List int)) =>
14 fun (t : List int) =>
15 fun (res : Pair Bool (List int)) =>
16 let b = fst res in
17 let rest = snd res in
18 match b with
19 | True =>
20 let z = Cons {Int} h rest in
21 And {Bool (List Int)} true z
22 | False =>
23 let bl = builtin lt h e in
24 match bl with
25 | True =>
26 let z = Cons {Int} e rest in
27 let z2 = Cons {Int} h z in
28 And {Bool (List Int)} true z2
29 | False =>
30 let z = Cons {Int} h rest in
31 And {Bool (List Int)} false z
32 end
33 end
34 in
35 let res1 = rec_int_Pair init iter1 ls in
36 let b0 = fst res1 in
37 let ls1 = snd res1 in
38 match b0 with
39 | True => ls1
40 | False => Cons {int} e ls1
41 end
42 in
43 let iter2 = fun (h : Int) => fun (t : List Int) =>
44 fun (res : Int) => sink_down h res
45 in
46 rec_int_int iter2 nil_int ls

Figure 8. Insertion sort of a list in ���.

(Ilya: Messages come with typed components, so there might be
no in-contract failure due to the ill-typed message! This is how we
keep expressions pure.)

4

return the first component  
of the result pair

Structural Recursion with Lists

Data type Constructors and their types Recursor and its type

unit U : unit unit_rec : forall �.� -> unit -> �

bool
True : bool

bool_rec : forall �.� -> � -> bool -> �
False : bool

nat
Zero : nat

nat_rec : forall �.� -> (nat -> � -> �) -> nat -> �
Succ : nat -> nat

pair T S And : forall � � . � -> � -> pair � � pair_rec : forall � � � . (� -> � -> �) -> pair � � -> �

either T S Left : forall �. � -> either �
either_rec : forall � � � . (� -> �) -> (� -> �) -> either � � -> �

Right : forall �. � -> either �

option T Some : forall �. � -> option �
option_rec : forall �. forall �.(� -> �) -> � -> option � -> �

None : forall �. option �

list T Nil : forall �. list �
list_rec : forall � � . � -> (� -> list � -> � -> �) -> list � -> �

Cons : forall �. � -> list � -> list �

Figure 4. Built-in Algebraic Data Types (ADTs), their constructors and recursion principles.

Figure 5. Runtime semantics of ���.

1 let list_product =
2 fun (ls : List Int) => fun (acc : Int) =>
3 let iter =
4 fun (h : Int) => fun (t : List Int) => fun (res : Int) =>
5 let zero = 0 in
6 let b = builtin eq h zero in
7 match b with
8 | True => 0
9 | False => builtin mult h res
10 end
11 in
12 let rec_nat = @ list_rec Int in
13 let rec_nat_nat = @ rec_nat Int in
14 rec_nat_nat acc iter ls

Figure 6. Product of integer numbers in a List ls.

1 let fib = fun (n : Nat) =>
2 let iter_nat = @ nat_rec (Pair Int Int) in
3 let iter_fun =
4 fun (n: Nat) => fun (res : Pair Int Int) =>
5 match res with
6 | And x y => let z = builtin add x y in
7 And {Int Int} z x
8 end
9 in
10 let zero = 0 in
11 let one = 1 in
12 let init_val = And {Int Int} one zero in
13 let res = iter_nat init_val iter_fun n in
14 fst res

Figure 7. Fibonacci numbers.

All this will be manifested in a type-and-e�ect system, keeping
track of the funny things.

(Ilya: Do we need anything else?)

4 Communication and Transitions
4.1 Messages
(Ilya: Emphasize the sending of several messages)

1 let insert_sort =
2 fun (ls : List Int) =>
3 let true = True in
4 let false = False in
5 let rec_int = @ list_rec Int in
6 let rec_int_int = @ rec_int Int in
7 let rec_int_Pair = @ rec_int (Pair Bool (List Int)) in
8 let nil_int = Nil {Int} in
9 let sink_down =
10 fun (e : Int) => fun (ls : List Int) =>
11 let init = And {Bool (List Int)} false nil_int in
12 let iter1 =
13 fun (h : Pair Bool (List int)) =>
14 fun (t : List int) =>
15 fun (res : Pair Bool (List int)) =>
16 let b = fst res in
17 let rest = snd res in
18 match b with
19 | True =>
20 let z = Cons {Int} h rest in
21 And {Bool (List Int)} true z
22 | False =>
23 let bl = builtin lt h e in
24 match bl with
25 | True =>
26 let z = Cons {Int} e rest in
27 let z2 = Cons {Int} h z in
28 And {Bool (List Int)} true z2
29 | False =>
30 let z = Cons {Int} h rest in
31 And {Bool (List Int)} false z
32 end
33 end
34 in
35 let res1 = rec_int_Pair init iter1 ls in
36 let b0 = fst res1 in
37 let ls1 = snd res1 in
38 match b0 with
39 | True => ls1
40 | False => Cons {int} e ls1
41 end
42 in
43 let iter2 = fun (h : Int) => fun (t : List Int) =>
44 fun (res : Int) => sink_down h res
45 in
46 rec_int_int iter2 nil_int ls

Figure 8. Insertion sort of a list in ���.

(Ilya: Messages come with typed components, so there might be
no in-contract failure due to the ill-typed message! This is how we
keep expressions pure.)

4

Result type

Element type

Value for Nil

| {z }

Iterator for non-empty list

argument list

argument list

Why Structural Recursion?
• Pros:

• All programs terminate
• Number of operations can be computed statically as a function of input size

• Cons:
• Some functions cannot be implemented efficiently (e.g., QuickSort)
• Cannot implement Ackerman function :(

A(m,n) =

8
<

:

n+ 1 if m = 0
A(m� 1, 1) if m > 0 and n = 0
A(m� 1, A(m,n� 1)) if m > 0 and n > 0

Statements (effectful)

x <- f

f := x

x = e

match x with〈pat => s〉end

x <- &B

accept

send ms

s ::= read from mutable field

store to a field

assign a pure expression

pattern matching and branching

read from blockchain state

accept incoming payment

send list of messages

Statement Semantics

BlockchainState Immutable global data (block number etc.)

JsK : BlockchainState ! Configuration ! Configuration

Configuration = Env ⇥ Fields ⇥ Balance ⇥ Incoming ⇥ Emitted

Immutable bindings

Mutable fields

Contract's 
own funds

Funds sent to contract

Messages 
to be sent

Account X

Global Execution Model

m6

Global Execution Model

Contract C

Contract D Contract E

Account YAccount Z

Account X
m1

m2

m3

m4

m5

Global Execution Model

ConfC Conf0C

Conf0DConfD

ConfE Conf0E

Conf00C
m1

m2

m4

m6

Final contract states

Fixed MAX length of call sequence

z}|{

Global Execution Model

ConfC Conf0C

Conf0DConfD

ConfE Conf0E

Conf00C
m1

m2

m4

m6

Putting it All Together
• Scilla contracts are (infinite) State-Transition Systems

• Interaction between contracts via sending/receiving messages

• Messages trigger (effectful) transitions (sequences of statements)

• A contract can send messages to other contracts via send statement

• Most computations are done via pure expressions, no storable closures

• Contract's state is immutable parameters, mutable fields, balance

Contract Structure

Library of pure functions

Immutable parameters

Mutable fields

Transition 1

Transition N

...

Working Example: Crowdfunding contract

• Parameters: campaign's owner, deadline (max block), funding goal

• Fields: registry of backers, "campaign-complete" boolean flag

• Transitions:

• Donate money (when the campaign is active)

• Get funds (as an owner, after the deadline, if the goal is met)

• Reclaim donation (after the deadline, if the goal is not met)

transition Donate (sender: Address, amount: Int)
 blk <- & BLOCKNUMBER;
 in_time = blk_leq blk max_block;
 match in_time with
 | True =>
 bs <- backers;
 res = check_update bs sender amount;
 match res with
 | None =>
 msg = {tag : Main; to : sender; amount : 0; code : already_backed};
 msgs = one_msg msg;
 send msgs
 | Some bs1 =>
 backers := bs1;
 accept;
 msg = {tag : Main; to : sender; amount : 0; code : accepted_code};
 msgs = one_msg msg;
 send msgs
 end
 | False =>
 msg = {tag : Main; to : sender; amount : 0; code : missed_dealine};
 msgs = one_msg msg;
 send msgs
 end
end

Structure of the incoming message

transition Donate (sender: Address, amount: Int)
 blk <- & BLOCKNUMBER;
 in_time = blk_leq blk max_block;
 match in_time with
 | True =>
 bs <- backers;
 res = check_update bs sender amount;
 match res with
 | None =>
 msg = {tag : Main; to : sender; amount : 0; code : already_backed};
 msgs = one_msg msg;
 send msgs
 | Some bs1 =>
 backers := bs1;
 accept;
 msg = {tag : Main; to : sender; amount : 0; code : accepted_code};
 msgs = one_msg msg;
 send msgs
 end
 | False =>
 msg = {tag : Main; to : sender; amount : 0; code : missed_dealine};
 msgs = one_msg msg;
 send msgs
 end
end

Reading from blockchain state

transition Donate (sender: Address, amount: Int)
 blk <- & BLOCKNUMBER;
 in_time = blk_leq blk max_block;
 match in_time with
 | True =>
 bs <- backers;
 res = check_update bs sender amount;
 match res with
 | None =>
 msg = {tag : Main; to : sender; amount : 0; code : already_backed};
 msgs = one_msg msg;
 send msgs
 | Some bs1 =>
 backers := bs1;
 accept;
 msg = {tag : Main; to : sender; amount : 0; code : accepted_code};
 msgs = one_msg msg;
 send msgs
 end
 | False =>
 msg = {tag : Main; to : sender; amount : 0; code : missed_dealine};
 msgs = one_msg msg;
 send msgs
 end
end

Using pure library functions 
(defined above in the contract)

transition Donate (sender: Address, amount: Int)
 blk <- & BLOCKNUMBER;
 in_time = blk_leq blk max_block;
 match in_time with
 | True =>
 bs <- backers;
 res = check_update bs sender amount;
 match res with
 | None =>
 msg = {tag : Main; to : sender; amount : 0; code : already_backed};
 msgs = one_msg msg;
 send msgs
 | Some bs1 =>
 backers := bs1;
 accept;
 msg = {tag : Main; to : sender; amount : 0; code : accepted_code};
 msgs = one_msg msg;
 send msgs
 end
 | False =>
 msg = {tag : Main; to : sender; amount : 0; code : missed_dealine};
 msgs = one_msg msg;
 send msgs
 end
end

transition Donate (sender: Address, amount: Int)
 blk <- & BLOCKNUMBER;
 in_time = blk_leq blk max_block;
 match in_time with
 | True =>
 bs <- backers;
 res = check_update bs sender amount;
 match res with
 | None =>
 msg = {tag : Main; to : sender; amount : 0; code : already_backed};
 msgs = one_msg msg;
 send msgs
 | Some bs1 =>
 backers := bs1;
 accept;
 msg = {tag : Main; to : sender; amount : 0; code : accepted_code};
 msgs = one_msg msg;
 send msgs
 end
 | False =>
 msg = {tag : Main; to : sender; amount : 0; code : missed_dealine};
 msgs = one_msg msg;
 send msgs
 end
end

Manipulating with fields

Accepting incoming funds

transition Donate (sender: Address, amount: Int)
 blk <- & BLOCKNUMBER;
 in_time = blk_leq blk max_block;
 match in_time with
 | True =>
 bs <- backers;
 res = check_update bs sender amount;
 match res with
 | None =>
 msg = {tag : Main; to : sender; amount : 0; code : already_backed};
 msgs = one_msg msg;
 send msgs
 | Some bs1 =>
 backers := bs1;
 accept;
 msg = {tag : Main; to : sender; amount : 0; code : accepted_code};
 msgs = one_msg msg;
 send msgs
 end
 | False =>
 msg = {tag : Main; to : sender; amount : 0; code : missed_dealine};
 msgs = one_msg msg;
 send msgs
 end
end

transition Donate (sender: Address, amount: Int)
 blk <- & BLOCKNUMBER;
 in_time = blk_leq blk max_block;
 match in_time with
 | True =>
 bs <- backers;
 res = check_update bs sender amount;
 match res with
 | None =>
 msg = {tag : Main; to : sender; amount : 0; code : already_backed};
 msgs = one_msg msg;
 send msgs
 | Some bs1 =>
 backers := bs1;
 accept;
 msg = {tag : Main; to : sender; amount : 0; code : accepted_code};
 msgs = one_msg msg;
 send msgs
 end
 | False =>
 msg = {tag : Main; to : sender; amount : 0; code : missed_dealine};
 msgs = one_msg msg;
 send msgs
 end
end

Creating and sending messages

transition Donate (sender: Address, amount: Int)
 blk <- & BLOCKNUMBER;
 in_time = blk_leq blk max_block;
 match in_time with
 | True =>
 bs <- backers;
 res = check_update bs sender amount;
 match res with
 | None =>
 msg = {tag : Main; to : sender; amount : 0; code : already_backed};
 msgs = one_msg msg;
 send msgs
 | Some bs1 =>
 backers := bs1;
 accept;
 msg = {tag : Main; to : sender; amount : 0; code : accepted_code};
 msgs = one_msg msg;
 send msgs
 end
 | False =>
 msg = {tag : Main; to : sender; amount : 0; code : missed_dealine};
 msgs = one_msg msg;
 send msgs
 end
end

Amount of own funds  
transferred in a message

transition Donate (sender: Address, amount: Int)
 blk <- & BLOCKNUMBER;
 in_time = blk_leq blk max_block;
 match in_time with
 | True =>
 bs <- backers;
 res = check_update bs sender amount;
 match res with
 | None =>
 msg = {tag : Main; to : sender; amount : 0; code : already_backed};
 msgs = one_msg msg;
 send msgs
 | Some bs1 =>
 backers := bs1;
 accept;
 msg = {tag : Main; to : sender; amount : 0; code : accepted_code};
 msgs = one_msg msg;
 send msgs
 end
 | False =>
 msg = {tag : Main; to : sender; amount : 0; code : missed_dealine};
 msgs = one_msg msg;
 send msgs
 end
end

Numeric code to inform the recipient

Demo

Verifying Scilla Contracts

• Local properties (e.g., "transition does not throw an exception")

• Invariants (e.g., "balance is always strictly positive")

• Temporal properties (something good eventually happens)

Scilla
Coq Proof Assistant

• State-of-the art verification framework
• Based on dependently typed functional language
• Interactive — requires a human in the loop
• Very small trusted code base
• Used to implement fully verified

• compilers
• operating systems
• distributed protocols (including blockchains)

Coq Proof Assistant

Q since P as long R ≝  
 ∀ conf conf′, conf →R* conf′, P(conf) ⇒ Q(conf, conf′)

•“Token price only goes up”

•“No payments accepted after the quorum is reached”

•“No changes can be made after locking”

•“Consensus results are irrevocable”

ConfC Conf0C Conf00C
m m′

P holds here Q holds here

Temporal Properties

R holds for intermediate messages

z}|{

Temporal Properties
Q since P as long R ≝  
 ∀ conf conf′, conf →R* conf′, P(conf) ⇒ Q(conf, conf′)

Definition since_as_long
 (P : conf ! Prop)
 (Q : conf ! conf ! Prop)
 (R : bstate * message ! Prop) :=
 ∀ sc conf conf',
 P st !
 (conf ⇝ conf' sc) ⋀ (∀ b, b ∈ sc ! R b) !
 Q conf conf'.

Specifying properties of Crowdfunding

• Lemma 1: Contract will always have enough balance to refund everyone.

• Lemma 2: Contract will not alter its contribution records.

• Lemma 3: Each contributor will be refunded the right amount,  
 if the campaign fails.

• Lemma 2: Contract will not alter its contribution records.

Definition donated (b : address) (d : amount) conf :=
 conf.backers(b) == d.

Definition no_claims_from (b : address)
 (q : bstate * message) :=
 q.message.sender != b.

Lemma donation_preserved (b : address) (d : amount):
 since_as long (donated b d) (fun c c' => donated b d c')
 (no_claims_from b).

b donated amount d

b didn’t try to claim

b’s records are preserved by the contract

Demo

Need a low-level language

Must be Turing-complete

Code is law

Need a language easy to reason about

Primitive recursion suffices in most cases

Code should abide by a specification

Misconceptions, revisited

To Take Away
Scilla: Smart Contract Intermediate-Level Language

• Small: builds on the polymorphic lambda-calculus with extensions.

• Principled: separates computations, effects, and communication.

• Verifiable: formal semantics and methodology for machine-assisted reasoning.

Work in Progress

• Integrating with an existing blockchain solution

• Compilation into an efficient back-end (LLVM)

• Certifications for Proof-Carrying Code (storable on a blockchain)

• Automated Model Checking smart contract properties

• PL support for sharded contract executions
Thanks!

