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Smart Contracts
• Stateful mutable objects replicated via a consensus protocol 

• State typically involves a stored amount of funds/currency 

• One or more entry points: invoked reactively by a client transaction 

• Main usages:  
• crowdfunding and ICO 
• multi-party accounting  
• voting and arbitration  
• puzzle-solving games with distribution of rewards  

• Supporting platforms: Ethereum, Tezos, Zilliqa, … 



Smart Contracts in a Nutshell

Computations

State Manipulation

Effects

Communication

obtaining values from inputs

changing contract's fields

accepting funds, logging events

sending funds, calling other contracts
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Scilla
Smart Contract Intermediate-Level Language

Principled model for computations

Not Turing-complete 

Explicit Effects

Communication

System F with small extensions

Only structural recursion/iteration

State-transformer semantics

Contracts are autonomous actors



Scilla Pragmatics
• Open source: github.com/Zilliqa/scilla  

• Intentionally minimalistic: a small language is easier to reason about 

• Implemented in OCaml (and a bit of C++), ~6 kLOC 

• Reference evaluator is only ~350 LOC 

• Mostly purely functional, Statically Typed 

• Inspired by OCaml, Haskell, Scala, and Erlang

https://github.com/Zilliqa/scilla


Statically Typed
• Types describe the sets of programs 

• Well-typed programs don’t go wrong. 

• No applying an Int (as a function) to a String 

• No adding List to Bool  

• No mishandled/forgotten arguments 

• No ill-formed messages 

• etc.Haskell Curry
Robin Milner



Follow the code!

github.com/ilyasergey/scilla-demo



Types

t  ::= p 
C t1 … tn 
t1 -> t2 

‘A 
forall ‘A . t 
Map t1 t2

Primitive types

Maps

Functions
Algebraic data types

Type variables
Polymorphic types
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Primitive types and Values

p  ::= Int32, Int64, Int128, Int256 
Uint32, Uint64, Uint128, Uint256 
String 
ByStrX, ByStr 
BNum 
Message
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Structural Recursion in ScillaData type Constructors and their types Recursor and its type

unit U : unit unit_rec : forall �.� -> unit -> �

bool
True : bool

bool_rec : forall �.� -> � -> bool -> �
False : bool

nat
Zero : nat

nat_rec : forall �.� -> (nat -> � -> �) -> nat -> �
Succ : nat -> nat

pair T S And : forall � � . � -> � -> pair � � pair_rec : forall � � � . (� -> � -> � ) -> pair � � -> �

either T S Left : forall �. � -> either �
either_rec : forall � � � . (� -> � ) -> (� -> � ) -> either � � -> �

Right : forall �. � -> either �

option T Some : forall �. � -> option �
option_rec : forall �. forall �.(� -> �) -> � -> option � -> �

None : forall �. option �

list T Nil : forall �. list �
list_rec : forall � � . � -> (� -> list � -> � -> � ) -> list �

Cons : forall �. � -> list � -> list �

Figure 4. Built-in Algebraic Data Types (ADTs), their constructors and recursion principles.

Figure 5. Runtime semantics of ���.

1 let list_product =
2 fun (ls : List Int) => fun (acc : Int) =>
3 let iter =
4 fun (h : Int) => fun (t : List Int) => fun (res : Int) =>
5 let zero = 0 in
6 let b = builtin eq h zero in
7 match b with
8 | True => 0
9 | False => builtin mult h res
10 end
11 in
12 let rec_nat = @ list_rec Nat in
13 let rec_nat_nat = @ rec_nat Nat in
14 rec_nat_nat acc iter ls

Figure 6. Product of integer numbers in a List ls.

1 let fib = fun (n : Nat) =>
2 let iter_nat = @ nat_rec (Pair Nat Nat) in
3 let iter_fun =
4 fun (n: Nat) => fun (res : Pair Nat Nat) =>
5 match res with
6 | And x y => let z = add x y in
7 And {Nat Nat} z x
8 end
9 in
10 let zero = Zero in
11 let one = Succ zero in
12 let init_val = And {Nat Nat} one zero in
13 let res = iter_nat init_val iter_fun n in
14 fst res

Figure 7. Fibonacci numbers.

All this will be manifested in a type-and-e�ect system, keeping
track of the funny things.

(Ilya: Do we need anything else?)

4 Communication and Transitions
4.1 Messages
(Ilya: Emphasize the sending of several messages)

1 let insert_sort =
2 fun (ls : List Int) =>
3 let true = True in
4 let false = False in
5 let rec_int = @ list_rec Int in
6 let rec_int_int = @ rec_int Int in
7 let rec_int_Pair = @ rec_int (Pair Bool (List Int)) in
8 let nil_int = Nil {Int} in
9 let sink_down =
10 fun (e : Int) => fun (ls : List Int) =>
11 let init = And {Bool (List Int)} false nil_int in
12 let iter1 =
13 fun (h : Pair Bool (List int)) =>
14 fun (t : List int) =>
15 fun (res : Pair Bool (List int)) =>
16 let b = fst res in
17 let rest = snd res in
18 match b with
19 | True =>
20 let z = Cons {Int} h rest in
21 And {Bool (List Int)} true z
22 | False =>
23 let bl = builtin lt h e in
24 match bl with
25 | True =>
26 let z = Cons {Int} e rest in
27 let z2 = Cons {Int} h z in
28 And {Bool (List Int)} true z2
29 | False =>
30 let z = Cons {Int} h rest in
31 And {Bool (List Int)} false z
32 end
33 end
34 in
35 let res1 = rec_int_Pair init iter1 ls in
36 let b0 = fst res1 in
37 let ls1 = snd res1 in
38 match b0 with
39 | True => ls1
40 | False => Cons {int} e ls1
41 end
42 in
43 let iter2 = fun (h : Int) => fun (t : List Int) =>
44 fun (res : Int) => sink_down h res
45 in
46 rec_int_int iter2 nil_int ls

Figure 8. Insertion sort of a list in ���.

(Ilya: Messages come with typed components, so there might be
no in-contract failure due to the ill-typed message! This is how we
keep expressions pure.)

4

Natural numbers (not Ints!)

Result type

Value for 0

| {z }

constructing the next value

number of  
iterations

final result



Structural Recursion with Lists

Data type Constructors and their types Recursor and its type

unit U : unit unit_rec : forall �.� -> unit -> �

bool
True : bool

bool_rec : forall �.� -> � -> bool -> �
False : bool

nat
Zero : nat

nat_rec : forall �.� -> (nat -> � -> �) -> nat -> �
Succ : nat -> nat

pair T S And : forall � � . � -> � -> pair � � pair_rec : forall � � � . (� -> � -> � ) -> pair � � -> �

either T S Left : forall �. � -> either �
either_rec : forall � � � . (� -> � ) -> (� -> � ) -> either � � -> �

Right : forall �. � -> either �

option T Some : forall �. � -> option �
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None : forall �. option �

list T Nil : forall �. list �
list_rec : forall � � . � -> (� -> list � -> � -> � ) -> list � -> �
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Figure 4. Built-in Algebraic Data Types (ADTs), their constructors and recursion principles.

Figure 5. Runtime semantics of ���.

1 let list_product =
2 fun (ls : List Int) => fun (acc : Int) =>
3 let iter =
4 fun (h : Int) => fun (t : List Int) => fun (res : Int) =>
5 let zero = 0 in
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7 match b with
8 | True => 0
9 | False => builtin mult h res
10 end
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Figure 6. Product of integer numbers in a List ls.

1 let fib = fun (n : Nat) =>
2 let iter_nat = @ nat_rec (Pair Int Int) in
3 let iter_fun =
4 fun (n: Nat) => fun (res : Pair Int Int) =>
5 match res with
6 | And x y => let z = builtin add x y in
7 And {Int Int} z x
8 end
9 in
10 let zero = 0 in
11 let one = 1 in
12 let init_val = And {Int Int} one zero in
13 let res = iter_nat init_val iter_fun n in
14 fst res

Figure 7. Fibonacci numbers.

All this will be manifested in a type-and-e�ect system, keeping
track of the funny things.

(Ilya: Do we need anything else?)
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4 let false = False in
5 let rec_int = @ list_rec Int in
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9 let sink_down =
10 fun (e : Int) => fun (ls : List Int) =>
11 let init = And {Bool (List Int)} false nil_int in
12 let iter1 =
13 fun (h : Pair Bool (List int)) =>
14 fun (t : List int) =>
15 fun (res : Pair Bool (List int)) =>
16 let b = fst res in
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Expressions (pure)
Term Meaning Description

Expression e ::= f simple expression
let x h: T i = f in e let-form

Simple expression f ::= l primitive literal
x variable
{ hentryik } Message
fun (x : T ) => e function
builtin b hxk i built-in application
x hxk i application
tfun � => e type function
@x T type instantiation
C h {hTk i} i hxk i constructor instantiation
match x with h | selk i end pattern matching

Selector sel ::= pat => e
Pattern pat ::= x variable binding

C hpatk i constructor pattern
( pat ) paranthesized pattern
_ wildcard pattern

Message entrry entry ::= b : x
Name b identi�er

Figure 2. Syntax of ��� expressions.

Operation Symbol Parameters Result type Result Remarks

Structural equality eq (x : T ) (� : T ) bool x = � T is any ground type
Integer addition add (x : Int) (� : Int) Int x b+ � cf. details in §2.2.2
Integer subtraction sub (x : Int) (� : Int) Int x b� � cf. details in §2.2.2
Integer multiplication mult (x : Int) (� : Int) Int x b⇥ � cf. details in §2.2.2
Integer division div (x : Int) (� : Int) Int x b/ � cf. details in §2.2.2
Integer remainder mod (x : Int) (� : Int) Int x dmod � cf. details in §2.2.2
Integer comparison lt (x : Int) (� : Int) bool x < � cf. details in §2.2.2
Hashing hash (x : T ) Hash SHA3 256 hash
Time comparison tlt (x : btime) (� : btime) bool x < �
Block # comparison blt (x : BNum) (� : BNum) bool x < �

Type conversions

nat to Int conversion toint (x : nat) Option Int
Some x as Int if x  MAXINT
None otherwise

Int to nat conversion tonat (x : Int) Option nat
Some x as nat if x � 0
None otherwise

Figure 3. Built-in operations and conversions on primitive data types.

2.3 Static Semantics
(Ilya: Standard typing rules for System F)

2.4 Operational Semantics for ��� Expressions
(Ilya: TODO: CEK machine comes here)

2.5 Examples
Let us now see several examples of actual programs written in ���.

(Ilya: TODO: provide example programs.)

3 Computations and Commands
The following categories are present, all commands are in the CPS
style, ending via either send or return.

• Modifying contract �elds;
• Interacting with the blockchain (what are the primitives)?
• try/catch
• Exceptions;
• Events;
• Accepting funds (inverse of payable);
• Sending funds;

3



Statements (effectful)
x <- f

f := x

x = e

match x with〈pat => s〉end

x <- &B

accept

event m

send ms

s ::= read from mutable field 

store to a field 

assign a pure expression 

pattern matching and branching 

read from blockchain state 

accept incoming payment 

create a single event 

send list of messages



Statement Semantics

BlockchainState Immutable global data (block number etc.)

JsK : BlockchainState ! Configuration ! Configuration

Configuration = Env ⇥ Fields ⇥ Balance ⇥ Incoming ⇥ Emitted

Immutable bindings

Mutable fields

Contract's 
own funds

Funds sent to contract

Messages 
and events 
to be sent



Account X

Global Execution Model



m6

Global Execution Model

Contract C

Contract D Contract E

Account YAccount Z

Account X
m1

m2

m3

m4

m5



Putting it All Together
• Scilla contracts are (infinite) State-Transition Systems 

• Interaction between contracts via sending/receiving messages 

• Messages trigger (effectful) transitions (sequences of statements) 

• A contract can send messages to other contracts via send statement 

• Most computations are done via pure expressions, no storable closures 

• Contract's state is immutable parameters, mutable fields, balance



Contract Structure

Library of pure functions

Immutable parameters

Mutable fields

Transition 1

Transition N

...



Demo



Scilla as a Framework

Standard Library

Runtime Evaluator

Checkers

Type Checker

Pattern Matching  
Exhaustiveness Checker

Checker 1

Checker N

…

Syntax



How can you contribute?

• Implementing contracts in Scilla  

• Tooling support for better user experience 

• Language Infrastructure and Checkers



Ilya Sergey

Amrit KumarJacob Johannsen Vaivaswatha Nagaraj

Ian Tan

Edison Lim

Han Wen Chua



More resources

• http://scilla-lang.org  

• https://github.com/Zilliqa/scilla

Thanks!

http://scilla-lang.org
https://github.com/Zilliqa/scilla

