
Ilya Sergey

http://ilyasergey.net

Associate Professor, Yale-NUS College 
Lead Language Designer, Zilliqa

Safe Smart Contract Programming  
with Scilla

http://ilyasergey.net

Smart Contracts
• Stateful mutable objects replicated via a consensus protocol

• State typically involves a stored amount of funds/currency

• One or more entry points: invoked reactively by a client transaction

• Main usages:
• crowdfunding and ICO
• multi-party accounting
• voting and arbitration
• puzzle-solving games with distribution of rewards

• Supporting platforms: Ethereum, Tezos, Zilliqa, …

Smart Contracts in a Nutshell

Computations

State Manipulation

Effects

Communication

obtaining values from inputs

changing contract's fields

accepting funds, logging events

sending funds, calling other contracts

Computations

State Manipulation

Effects

Communication

Computations

State Manipulation Effects

Communication

Scilla
Smart Contract Intermediate-Level Language

Principled model for computations

Not Turing-complete

Explicit Effects

Communication

System F with small extensions

Only structural recursion/iteration

State-transformer semantics

Contracts are autonomous actors

Scilla Pragmatics
• Open source: github.com/Zilliqa/scilla

• Intentionally minimalistic: a small language is easier to reason about

• Implemented in OCaml (and a bit of C++), ~6 kLOC

• Reference evaluator is only ~350 LOC

• Mostly purely functional, Statically Typed

• Inspired by OCaml, Haskell, Scala, and Erlang

https://github.com/Zilliqa/scilla

Statically Typed
• Types describe the sets of programs

• Well-typed programs don’t go wrong.

• No applying an Int (as a function) to a String

• No adding List to Bool

• No mishandled/forgotten arguments

• No ill-formed messages

• etc.Haskell Curry
Robin Milner

Follow the code!

github.com/ilyasergey/scilla-demo

Types

t ::= p
C t1 … tn
t1 -> t2

‘A
forall ‘A . t
Map t1 t2

Primitive types

Maps

Functions
Algebraic data types

Type variables
Polymorphic types

Types

t ::= p
C t1 … tn
t1 -> t2

‘A
forall ‘A . t
Map t1 t2

Primitive types

Maps

Functions
Algebraic data types

Type variables
Polymorphic types

Primitive types and Values

p ::= Int32, Int64, Int128, Int256
Uint32, Uint64, Uint128, Uint256
String
ByStrX, ByStr
BNum
Message

Types

t ::= p
C t1 … tn
t1 -> t2

‘A
forall ‘A . t
Map t1 t2

Primitive types

Maps

Functions
Algebraic data types

Type variables
Polymorphic types

Types

t ::= p
C t1 … tn
t1 -> t2

‘A
forall ‘A . t
Map t1 t2

Primitive types

Maps

Functions
Algebraic data types

Type variables
Polymorphic types

Structural Recursion in ScillaData type Constructors and their types Recursor and its type

unit U : unit unit_rec : forall �.� -> unit -> �

bool
True : bool

bool_rec : forall �.� -> � -> bool -> �
False : bool

nat
Zero : nat

nat_rec : forall �.� -> (nat -> � -> �) -> nat -> �
Succ : nat -> nat

pair T S And : forall � � . � -> � -> pair � � pair_rec : forall � � � . (� -> � -> �) -> pair � � -> �

either T S Left : forall �. � -> either �
either_rec : forall � � � . (� -> �) -> (� -> �) -> either � � -> �

Right : forall �. � -> either �

option T Some : forall �. � -> option �
option_rec : forall �. forall �.(� -> �) -> � -> option � -> �

None : forall �. option �

list T Nil : forall �. list �
list_rec : forall � � . � -> (� -> list � -> � -> �) -> list �

Cons : forall �. � -> list � -> list �

Figure 4. Built-in Algebraic Data Types (ADTs), their constructors and recursion principles.

Figure 5. Runtime semantics of ���.

1 let list_product =
2 fun (ls : List Int) => fun (acc : Int) =>
3 let iter =
4 fun (h : Int) => fun (t : List Int) => fun (res : Int) =>
5 let zero = 0 in
6 let b = builtin eq h zero in
7 match b with
8 | True => 0
9 | False => builtin mult h res
10 end
11 in
12 let rec_nat = @ list_rec Nat in
13 let rec_nat_nat = @ rec_nat Nat in
14 rec_nat_nat acc iter ls

Figure 6. Product of integer numbers in a List ls.

1 let fib = fun (n : Nat) =>
2 let iter_nat = @ nat_rec (Pair Nat Nat) in
3 let iter_fun =
4 fun (n: Nat) => fun (res : Pair Nat Nat) =>
5 match res with
6 | And x y => let z = add x y in
7 And {Nat Nat} z x
8 end
9 in
10 let zero = Zero in
11 let one = Succ zero in
12 let init_val = And {Nat Nat} one zero in
13 let res = iter_nat init_val iter_fun n in
14 fst res

Figure 7. Fibonacci numbers.

All this will be manifested in a type-and-e�ect system, keeping
track of the funny things.

(Ilya: Do we need anything else?)

4 Communication and Transitions
4.1 Messages
(Ilya: Emphasize the sending of several messages)

1 let insert_sort =
2 fun (ls : List Int) =>
3 let true = True in
4 let false = False in
5 let rec_int = @ list_rec Int in
6 let rec_int_int = @ rec_int Int in
7 let rec_int_Pair = @ rec_int (Pair Bool (List Int)) in
8 let nil_int = Nil {Int} in
9 let sink_down =
10 fun (e : Int) => fun (ls : List Int) =>
11 let init = And {Bool (List Int)} false nil_int in
12 let iter1 =
13 fun (h : Pair Bool (List int)) =>
14 fun (t : List int) =>
15 fun (res : Pair Bool (List int)) =>
16 let b = fst res in
17 let rest = snd res in
18 match b with
19 | True =>
20 let z = Cons {Int} h rest in
21 And {Bool (List Int)} true z
22 | False =>
23 let bl = builtin lt h e in
24 match bl with
25 | True =>
26 let z = Cons {Int} e rest in
27 let z2 = Cons {Int} h z in
28 And {Bool (List Int)} true z2
29 | False =>
30 let z = Cons {Int} h rest in
31 And {Bool (List Int)} false z
32 end
33 end
34 in
35 let res1 = rec_int_Pair init iter1 ls in
36 let b0 = fst res1 in
37 let ls1 = snd res1 in
38 match b0 with
39 | True => ls1
40 | False => Cons {int} e ls1
41 end
42 in
43 let iter2 = fun (h : Int) => fun (t : List Int) =>
44 fun (res : Int) => sink_down h res
45 in
46 rec_int_int iter2 nil_int ls

Figure 8. Insertion sort of a list in ���.

(Ilya: Messages come with typed components, so there might be
no in-contract failure due to the ill-typed message! This is how we
keep expressions pure.)

4

Natural numbers (not Ints!)

Result type

Value for 0

| {z }

constructing the next value

number of
iterations

final result

Structural Recursion with Lists

Data type Constructors and their types Recursor and its type

unit U : unit unit_rec : forall �.� -> unit -> �

bool
True : bool

bool_rec : forall �.� -> � -> bool -> �
False : bool

nat
Zero : nat

nat_rec : forall �.� -> (nat -> � -> �) -> nat -> �
Succ : nat -> nat

pair T S And : forall � � . � -> � -> pair � � pair_rec : forall � � � . (� -> � -> �) -> pair � � -> �

either T S Left : forall �. � -> either �
either_rec : forall � � � . (� -> �) -> (� -> �) -> either � � -> �

Right : forall �. � -> either �

option T Some : forall �. � -> option �
option_rec : forall �. forall �.(� -> �) -> � -> option � -> �

None : forall �. option �

list T Nil : forall �. list �
list_rec : forall � � . � -> (� -> list � -> � -> �) -> list � -> �

Cons : forall �. � -> list � -> list �

Figure 4. Built-in Algebraic Data Types (ADTs), their constructors and recursion principles.

Figure 5. Runtime semantics of ���.

1 let list_product =
2 fun (ls : List Int) => fun (acc : Int) =>
3 let iter =
4 fun (h : Int) => fun (t : List Int) => fun (res : Int) =>
5 let zero = 0 in
6 let b = builtin eq h zero in
7 match b with
8 | True => 0
9 | False => builtin mult h res
10 end
11 in
12 let rec_nat = @ list_rec Int in
13 let rec_nat_nat = @ rec_nat Int in
14 rec_nat_nat acc iter ls

Figure 6. Product of integer numbers in a List ls.

1 let fib = fun (n : Nat) =>
2 let iter_nat = @ nat_rec (Pair Int Int) in
3 let iter_fun =
4 fun (n: Nat) => fun (res : Pair Int Int) =>
5 match res with
6 | And x y => let z = builtin add x y in
7 And {Int Int} z x
8 end
9 in
10 let zero = 0 in
11 let one = 1 in
12 let init_val = And {Int Int} one zero in
13 let res = iter_nat init_val iter_fun n in
14 fst res

Figure 7. Fibonacci numbers.

All this will be manifested in a type-and-e�ect system, keeping
track of the funny things.

(Ilya: Do we need anything else?)

4 Communication and Transitions
4.1 Messages
(Ilya: Emphasize the sending of several messages)

1 let insert_sort =
2 fun (ls : List Int) =>
3 let true = True in
4 let false = False in
5 let rec_int = @ list_rec Int in
6 let rec_int_int = @ rec_int Int in
7 let rec_int_Pair = @ rec_int (Pair Bool (List Int)) in
8 let nil_int = Nil {Int} in
9 let sink_down =
10 fun (e : Int) => fun (ls : List Int) =>
11 let init = And {Bool (List Int)} false nil_int in
12 let iter1 =
13 fun (h : Pair Bool (List int)) =>
14 fun (t : List int) =>
15 fun (res : Pair Bool (List int)) =>
16 let b = fst res in
17 let rest = snd res in
18 match b with
19 | True =>
20 let z = Cons {Int} h rest in
21 And {Bool (List Int)} true z
22 | False =>
23 let bl = builtin lt h e in
24 match bl with
25 | True =>
26 let z = Cons {Int} e rest in
27 let z2 = Cons {Int} h z in
28 And {Bool (List Int)} true z2
29 | False =>
30 let z = Cons {Int} h rest in
31 And {Bool (List Int)} false z
32 end
33 end
34 in
35 let res1 = rec_int_Pair init iter1 ls in
36 let b0 = fst res1 in
37 let ls1 = snd res1 in
38 match b0 with
39 | True => ls1
40 | False => Cons {int} e ls1
41 end
42 in
43 let iter2 = fun (h : Int) => fun (t : List Int) =>
44 fun (res : Int) => sink_down h res
45 in
46 rec_int_int iter2 nil_int ls

Figure 8. Insertion sort of a list in ���.

(Ilya: Messages come with typed components, so there might be
no in-contract failure due to the ill-typed message! This is how we
keep expressions pure.)

4

Result type

Element type

Value for Nil

| {z }

Iterator for non-empty list

argument list

argument list

Types

t ::= p
C t1 … tn
t1 -> t2

‘A
forall ‘A . t
Map t1 t2

Primitive types

Maps

Functions
Algebraic data types

Type variables
Polymorphic types

Expressions (pure)
Term Meaning Description

Expression e ::= f simple expression
let x h: T i = f in e let-form

Simple expression f ::= l primitive literal
x variable
{ hentryik } Message
fun (x : T) => e function
builtin b hxk i built-in application
x hxk i application
tfun � => e type function
@x T type instantiation
C h {hTk i} i hxk i constructor instantiation
match x with h | selk i end pattern matching

Selector sel ::= pat => e
Pattern pat ::= x variable binding

C hpatk i constructor pattern
(pat) paranthesized pattern
_ wildcard pattern

Message entrry entry ::= b : x
Name b identi�er

Figure 2. Syntax of ��� expressions.

Operation Symbol Parameters Result type Result Remarks

Structural equality eq (x : T) (� : T) bool x = � T is any ground type
Integer addition add (x : Int) (� : Int) Int x b+ � cf. details in §2.2.2
Integer subtraction sub (x : Int) (� : Int) Int x b� � cf. details in §2.2.2
Integer multiplication mult (x : Int) (� : Int) Int x b⇥ � cf. details in §2.2.2
Integer division div (x : Int) (� : Int) Int x b/ � cf. details in §2.2.2
Integer remainder mod (x : Int) (� : Int) Int x dmod � cf. details in §2.2.2
Integer comparison lt (x : Int) (� : Int) bool x < � cf. details in §2.2.2
Hashing hash (x : T) Hash SHA3 256 hash
Time comparison tlt (x : btime) (� : btime) bool x < �
Block # comparison blt (x : BNum) (� : BNum) bool x < �

Type conversions

nat to Int conversion toint (x : nat) Option Int
Some x as Int if x MAXINT
None otherwise

Int to nat conversion tonat (x : Int) Option nat
Some x as nat if x � 0
None otherwise

Figure 3. Built-in operations and conversions on primitive data types.

2.3 Static Semantics
(Ilya: Standard typing rules for System F)

2.4 Operational Semantics for ��� Expressions
(Ilya: TODO: CEK machine comes here)

2.5 Examples
Let us now see several examples of actual programs written in ���.

(Ilya: TODO: provide example programs.)

3 Computations and Commands
The following categories are present, all commands are in the CPS
style, ending via either send or return.

• Modifying contract �elds;
• Interacting with the blockchain (what are the primitives)?
• try/catch
• Exceptions;
• Events;
• Accepting funds (inverse of payable);
• Sending funds;

3

Statements (effectful)
x <- f

f := x

x = e

match x with〈pat => s〉end

x <- &B

accept

event m

send ms

s ::= read from mutable field

store to a field

assign a pure expression

pattern matching and branching

read from blockchain state

accept incoming payment

create a single event

send list of messages

Statement Semantics

BlockchainState Immutable global data (block number etc.)

JsK : BlockchainState ! Configuration ! Configuration

Configuration = Env ⇥ Fields ⇥ Balance ⇥ Incoming ⇥ Emitted

Immutable bindings

Mutable fields

Contract's 
own funds

Funds sent to contract

Messages
and events 
to be sent

Account X

Global Execution Model

m6

Global Execution Model

Contract C

Contract D Contract E

Account YAccount Z

Account X
m1

m2

m3

m4

m5

Putting it All Together
• Scilla contracts are (infinite) State-Transition Systems

• Interaction between contracts via sending/receiving messages

• Messages trigger (effectful) transitions (sequences of statements)

• A contract can send messages to other contracts via send statement

• Most computations are done via pure expressions, no storable closures

• Contract's state is immutable parameters, mutable fields, balance

Contract Structure

Library of pure functions

Immutable parameters

Mutable fields

Transition 1

Transition N

...

Demo

Scilla as a Framework

Standard Library

Runtime Evaluator

Checkers

Type Checker

Pattern Matching  
Exhaustiveness Checker

Checker 1

Checker N

…

Syntax

How can you contribute?

• Implementing contracts in Scilla

• Tooling support for better user experience

• Language Infrastructure and Checkers

Ilya Sergey

Amrit KumarJacob Johannsen Vaivaswatha Nagaraj

Ian Tan

Edison Lim

Han Wen Chua

More resources

• http://scilla-lang.org

• https://github.com/Zilliqa/scilla

Thanks!

http://scilla-lang.org
https://github.com/Zilliqa/scilla

