
Cardinality Analysis and its Applications:
from Glasgow Haskell Compiler

to Sharded Blockchains

Ilya Sergey

Part I
Cardinality Analysis for Haskell Programs

Joint work with Dimitrios Vytiniotis and Simon Peyton Jones, presented at POPL’14

Optimising compiler in a nutshell

p1

Optimising compiler in a nutshell

p1 c1

p2 c2

c1c2 '

c1c2 �

p1 c1

p2 c2

A(p1)

Annotating static analysis

A

A story of
three program optimisations

f2 xs = squash (\n -> sum (map (+ n) (map costly xs)))

f1 xs = let ys = map costly xs
 in squash (\n -> sum (map (+ n) ys))

f1, f2 :: [Int] -> Int

Optimisation 1

| {z }
if invoked more than once by squash

| {z }
if invoked at most once by squash

Which function is
better to run?

Better

Better

f1 xs = let ys = map costly xs
 in squash (\n. sum (map (+ n) ys))

f2 xs = squash (\n. sum (map (+ n) (map costly xs)))

squash1, squash2 :: (Int -> Int) -> Int

squash1 k = sum (map k [1..10])

squash2 k = 2 * (k 0)

Optimisation 1

Need to know:
how many times

a function is called.

(call cardinality)

We discuss related work in Section 8. Distinctive features of our
work are (a) the notion of call demands, (b) a full implementation
measured against a state of the art optimising compiler, and (c) the
combination of simplicity with worthwhile performance improve-
ments.

2. What is Cardinality Analysis?
Cardinality analysis answers three inter-related questions, in the
setting of a non-strict, pure functional language like Haskell:
• How many times is a particular, syntactic lambda-expression

called (Section 2.1)?
• Which components of a data structure are never evaluated; that

is, are absent (Section 2.3)?
• How many times is a particular, syntactic thunk evaluated (Sec-

tion 2.4)?

2.1 Call cardinality
We saw in the introduction an example where it is helpful to
know when a function calls its argument at most once. A lambda
that is called at most once is called a one-shot lambda, and they
are extremely common in functional programming: for example a
continuation is usually one-shot. So cardinality analysis can be a
big win when optimising continuation-heavy programs.
Nor is that all. As we saw in the Introduction, inlining under a one-
shot lambda (to transform f1 into f2) allows short-cut deforesta-
tion to fuse two otherwise-separate calls of map. But short-cut de-
forestation itself introduces many calls of of the function build:
build :: (forall b. (a -> b -> b) -> b -> b) -> [a]
build g = g (:) []

You can see that build calls its argument exactly once, and inlin-
ing ys in calls like (build (\cn. ...ys...)) turns out to be
crucial to making short-cut deforestation work in practice. Gill de-
votes a section of his thesis to elucidating this point (Gill 1996,
Chapter 4.3). Gill lacked an analysis for one-shot lambdas, so his
implementation (still extant in GHC today) relies on a gross hack:
he taught GHC’s optimiser to behave specially for build itself, and
a couple of other functions. No user-defined function will have this
good behaviour. Our analysis subsumes the hack, by providing an
analysis that deduces the correct one-shot information for build,
as well as many other functions.

2.2 Currying
In a higher order language with curried functions, we need to be
careful about the details. For example, consider
f3 a = wurble a (\x.let t = costly x in \y. t+y)

wurble1 a g = g 2 a + g 3 a
wurble2 a g = sum (map (g a) [1..1000])

If wurble was wurble1, then in f3 it would be best to inline t at
its use site, thus:
f4 a = wurble1 a (\x.\y. costly x + y)

The transformed f4 is much better than f3: it avoids allocating a
thunk for t, and avoids allocating a function closure for the \y.
But if f3 called wurble2 instead, such a transformation would be
disastrous. Why? Because wurble2 applies its argument g to one
argument a, and the function thus computed is applied to each of
1000 integers. In f3 we will compute (costly a) once, but f4
will compute it 1000 times, which is arbitrarily bad.
So our analysis of wurble2 must be able to report “wurble2’s
argument g is called1 once (applied to one argument), and the

1 We will always use “called” to mean “applied to one argument”.

result is called many times”. We formalise this by giving a usage

signature to wurble, like this:

wurble1 :: U ! C
!(C 1(U)) ! •

wurble2 :: U ! C
1(C!(U)) ! •

The notation C
!(C 1(U)) is a usage demand: it describes how a

(function) value is used. The demand type U ! C
!(C 1(U)) ! •

describes how a function uses its arguments, therefore it gives a
usage demand for each argument. (The “•” has no significance; we
are just used to seeing something after the final arrow!) Informally,
the C

1(d) means “this argument is called once (applied to one
argument), and the result is used with usage d”, whereas C

!(d)
means “this argument may be called many times, with each result
used with usage d”. The U means “is used in some unknown way
(or even not used at all)”. Note that wurble1’s second argument
usage is C

!(C 1(U)), not C
!(C!(U)); that is, in all cases the

result of applying g to one argument is then called only once.

2.3 Absence
Consider this function
f x = case x of (p,q) -> <cbody>

A strictness analyser can see that f is strict in x, and so can use
call-by-value. Moreover, rather than allocate a pair that is passed to
f, which immediately takes it apart, GHC uses a worker/wrapper
transformation to pass the pieces separately, thus:
f x = case x of (p,q) -> fw p q
fw p q = <cbody>

Now f (the “wrapper”) is small, and can be inlined at f’s call
sites, often eliminating the allocation of the pair; meanwhile fw
(the “worker”) does the actual work. Strictness analysis, and the
worker/wrapper transform to exploit its results, are hugely impor-
tant to generating efficient code for lazy programs (Peyton Jones
and Partain 1994; Peyton Jones and Santos 1998).
In general, f’s right-hand side often does not have a syntacti-

cally visible case expression. For example, what if f simply
called another function g that was strict in x? Fortunately the
worker/wrapper transform is easy to generalise. Suppose the right
hand side of f was just <fbody>. Then we would transform to
f x = case x of (p,q) -> fw p q
fw p q = let x = (p,q) in <fbody>

Now we hope that the binding for x will cancel with case expres-
sions in <fbody>, and indeed it usually proves to be so (Peyton
Jones and Santos 1998).
But what if <fbody> did not use q at all? Then it would be stupid
to pass q to fw. We would rather transform to:
f x = case x of (p,q) -> fw p
fw p = let x = (p, error "urk") in <fbody>

This turns out to be very important in practice. Programmers sel-
dom write functions with wholly-unused arguments, but they fre-
quently write functions that use only part of their argument, and ig-
noring this point leads to large numbers of unused arguments being
passed around in the “optimised” program after the worker-wrapper
transformation. Absence analysis has therefore been part of GHC
since its earliest days (Peyton Jones and Partain 1994), but it has
never been formalised. In the framework of this paper, we give f a
usage signature like this:

f :: U (U ,A) ! •
The U (U ,A) indicates that the argument is a product type; that is,
a data type with just one constructor. The A (for “absent”) indicates
that f discards the second component of the product.

2

We discuss related work in Section 8. Distinctive features of our
work are (a) the notion of call demands, (b) a full implementation
measured against a state of the art optimising compiler, and (c) the
combination of simplicity with worthwhile performance improve-
ments.

2. What is Cardinality Analysis?
Cardinality analysis answers three inter-related questions, in the
setting of a non-strict, pure functional language like Haskell:
• How many times is a particular, syntactic lambda-expression

called (Section 2.1)?
• Which components of a data structure are never evaluated; that

is, are absent (Section 2.3)?
• How many times is a particular, syntactic thunk evaluated (Sec-

tion 2.4)?

2.1 Call cardinality
We saw in the introduction an example where it is helpful to
know when a function calls its argument at most once. A lambda
that is called at most once is called a one-shot lambda, and they
are extremely common in functional programming: for example a
continuation is usually one-shot. So cardinality analysis can be a
big win when optimising continuation-heavy programs.
Nor is that all. As we saw in the Introduction, inlining under a one-
shot lambda (to transform f1 into f2) allows short-cut deforesta-
tion to fuse two otherwise-separate calls of map. But short-cut de-
forestation itself introduces many calls of of the function build:
build :: (forall b. (a -> b -> b) -> b -> b) -> [a]
build g = g (:) []

You can see that build calls its argument exactly once, and inlin-
ing ys in calls like (build (\cn. ...ys...)) turns out to be
crucial to making short-cut deforestation work in practice. Gill de-
votes a section of his thesis to elucidating this point (Gill 1996,
Chapter 4.3). Gill lacked an analysis for one-shot lambdas, so his
implementation (still extant in GHC today) relies on a gross hack:
he taught GHC’s optimiser to behave specially for build itself, and
a couple of other functions. No user-defined function will have this
good behaviour. Our analysis subsumes the hack, by providing an
analysis that deduces the correct one-shot information for build,
as well as many other functions.

2.2 Currying
In a higher order language with curried functions, we need to be
careful about the details. For example, consider
f3 a = wurble a (\x.let t = costly x in \y. t+y)

wurble1 a g = g 2 a + g 3 a
wurble2 a g = sum (map (g a) [1..1000])

If wurble was wurble1, then in f3 it would be best to inline t at
its use site, thus:
f4 a = wurble1 a (\x.\y. costly x + y)

The transformed f4 is much better than f3: it avoids allocating a
thunk for t, and avoids allocating a function closure for the \y.
But if f3 called wurble2 instead, such a transformation would be
disastrous. Why? Because wurble2 applies its argument g to one
argument a, and the function thus computed is applied to each of
1000 integers. In f3 we will compute (costly a) once, but f4
will compute it 1000 times, which is arbitrarily bad.
So our analysis of wurble2 must be able to report “wurble2’s
argument g is called1 once (applied to one argument), and the

1 We will always use “called” to mean “applied to one argument”.

result is called many times”. We formalise this by giving a usage

signature to wurble, like this:

wurble1 :: U ! C
!(C 1(U)) ! •

wurble2 :: U ! C
1(C!(U)) ! •

The notation C
!(C 1(U)) is a usage demand: it describes how a

(function) value is used. The demand type U ! C
!(C 1(U)) ! •

describes how a function uses its arguments, therefore it gives a
usage demand for each argument. (The “•” has no significance; we
are just used to seeing something after the final arrow!) Informally,
the C

1(d) means “this argument is called once (applied to one
argument), and the result is used with usage d”, whereas C

!(d)
means “this argument may be called many times, with each result
used with usage d”. The U means “is used in some unknown way
(or even not used at all)”. Note that wurble1’s second argument
usage is C

!(C 1(U)), not C
!(C!(U)); that is, in all cases the

result of applying g to one argument is then called only once.

2.3 Absence
Consider this function
f x = case x of (p,q) -> <cbody>

A strictness analyser can see that f is strict in x, and so can use
call-by-value. Moreover, rather than allocate a pair that is passed to
f, which immediately takes it apart, GHC uses a worker/wrapper
transformation to pass the pieces separately, thus:
f x = case x of (p,q) -> fw p q
fw p q = <cbody>

Now f (the “wrapper”) is small, and can be inlined at f’s call
sites, often eliminating the allocation of the pair; meanwhile fw
(the “worker”) does the actual work. Strictness analysis, and the
worker/wrapper transform to exploit its results, are hugely impor-
tant to generating efficient code for lazy programs (Peyton Jones
and Partain 1994; Peyton Jones and Santos 1998).
In general, f’s right-hand side often does not have a syntacti-

cally visible case expression. For example, what if f simply
called another function g that was strict in x? Fortunately the
worker/wrapper transform is easy to generalise. Suppose the right
hand side of f was just <fbody>. Then we would transform to
f x = case x of (p,q) -> fw p q
fw p q = let x = (p,q) in <fbody>

Now we hope that the binding for x will cancel with case expres-
sions in <fbody>, and indeed it usually proves to be so (Peyton
Jones and Santos 1998).
But what if <fbody> did not use q at all? Then it would be stupid
to pass q to fw. We would rather transform to:
f x = case x of (p,q) -> fw p
fw p = let x = (p, error "urk") in <fbody>

This turns out to be very important in practice. Programmers sel-
dom write functions with wholly-unused arguments, but they fre-
quently write functions that use only part of their argument, and ig-
noring this point leads to large numbers of unused arguments being
passed around in the “optimised” program after the worker-wrapper
transformation. Absence analysis has therefore been part of GHC
since its earliest days (Peyton Jones and Partain 1994), but it has
never been formalised. In the framework of this paper, we give f a
usage signature like this:

f :: U (U ,A) ! •
The U (U ,A) indicates that the argument is a product type; that is,
a data type with just one constructor. The A (for “absent”) indicates
that f discards the second component of the product.

2

“worker-wrapper” split

Optimisation 2

We discuss related work in Section 8. Distinctive features of our
work are (a) the notion of call demands, (b) a full implementation
measured against a state of the art optimising compiler, and (c) the
combination of simplicity with worthwhile performance improve-
ments.

2. What is Cardinality Analysis?
Cardinality analysis answers three inter-related questions, in the
setting of a non-strict, pure functional language like Haskell:
• How many times is a particular, syntactic lambda-expression

called (Section 2.1)?
• Which components of a data structure are never evaluated; that

is, are absent (Section 2.3)?
• How many times is a particular, syntactic thunk evaluated (Sec-

tion 2.4)?

2.1 Call cardinality
We saw in the introduction an example where it is helpful to
know when a function calls its argument at most once. A lambda
that is called at most once is called a one-shot lambda, and they
are extremely common in functional programming: for example a
continuation is usually one-shot. So cardinality analysis can be a
big win when optimising continuation-heavy programs.
Nor is that all. As we saw in the Introduction, inlining under a one-
shot lambda (to transform f1 into f2) allows short-cut deforesta-
tion to fuse two otherwise-separate calls of map. But short-cut de-
forestation itself introduces many calls of of the function build:
build :: (forall b. (a -> b -> b) -> b -> b) -> [a]
build g = g (:) []

You can see that build calls its argument exactly once, and inlin-
ing ys in calls like (build (\cn. ...ys...)) turns out to be
crucial to making short-cut deforestation work in practice. Gill de-
votes a section of his thesis to elucidating this point (Gill 1996,
Chapter 4.3). Gill lacked an analysis for one-shot lambdas, so his
implementation (still extant in GHC today) relies on a gross hack:
he taught GHC’s optimiser to behave specially for build itself, and
a couple of other functions. No user-defined function will have this
good behaviour. Our analysis subsumes the hack, by providing an
analysis that deduces the correct one-shot information for build,
as well as many other functions.

2.2 Currying
In a higher order language with curried functions, we need to be
careful about the details. For example, consider
f3 a = wurble a (\x.let t = costly x in \y. t+y)

wurble1 a g = g 2 a + g 3 a
wurble2 a g = sum (map (g a) [1..1000])

If wurble was wurble1, then in f3 it would be best to inline t at
its use site, thus:
f4 a = wurble1 a (\x.\y. costly x + y)

The transformed f4 is much better than f3: it avoids allocating a
thunk for t, and avoids allocating a function closure for the \y.
But if f3 called wurble2 instead, such a transformation would be
disastrous. Why? Because wurble2 applies its argument g to one
argument a, and the function thus computed is applied to each of
1000 integers. In f3 we will compute (costly a) once, but f4
will compute it 1000 times, which is arbitrarily bad.
So our analysis of wurble2 must be able to report “wurble2’s
argument g is called1 once (applied to one argument), and the

1 We will always use “called” to mean “applied to one argument”.

result is called many times”. We formalise this by giving a usage

signature to wurble, like this:

wurble1 :: U ! C
!(C 1(U)) ! •

wurble2 :: U ! C
1(C!(U)) ! •

The notation C
!(C 1(U)) is a usage demand: it describes how a

(function) value is used. The demand type U ! C
!(C 1(U)) ! •

describes how a function uses its arguments, therefore it gives a
usage demand for each argument. (The “•” has no significance; we
are just used to seeing something after the final arrow!) Informally,
the C

1(d) means “this argument is called once (applied to one
argument), and the result is used with usage d”, whereas C

!(d)
means “this argument may be called many times, with each result
used with usage d”. The U means “is used in some unknown way
(or even not used at all)”. Note that wurble1’s second argument
usage is C

!(C 1(U)), not C
!(C!(U)); that is, in all cases the

result of applying g to one argument is then called only once.

2.3 Absence
Consider this function
f x = case x of (p,q) -> <cbody>

A strictness analyser can see that f is strict in x, and so can use
call-by-value. Moreover, rather than allocate a pair that is passed to
f, which immediately takes it apart, GHC uses a worker/wrapper
transformation to pass the pieces separately, thus:
f x = case x of (p,q) -> fw p q
fw p q = <cbody>

Now f (the “wrapper”) is small, and can be inlined at f’s call
sites, often eliminating the allocation of the pair; meanwhile fw
(the “worker”) does the actual work. Strictness analysis, and the
worker/wrapper transform to exploit its results, are hugely impor-
tant to generating efficient code for lazy programs (Peyton Jones
and Partain 1994; Peyton Jones and Santos 1998).
In general, f’s right-hand side often does not have a syntacti-

cally visible case expression. For example, what if f simply
called another function g that was strict in x? Fortunately the
worker/wrapper transform is easy to generalise. Suppose the right
hand side of f was just <fbody>. Then we would transform to
f x = case x of (p,q) -> fw p q
fw p q = let x = (p,q) in <fbody>

Now we hope that the binding for x will cancel with case expres-
sions in <fbody>, and indeed it usually proves to be so (Peyton
Jones and Santos 1998).
But what if <fbody> did not use q at all? Then it would be stupid
to pass q to fw. We would rather transform to:
f x = case x of (p,q) -> fw p
fw p = let x = (p, error "urk") in <fbody>

This turns out to be very important in practice. Programmers sel-
dom write functions with wholly-unused arguments, but they fre-
quently write functions that use only part of their argument, and ig-
noring this point leads to large numbers of unused arguments being
passed around in the “optimised” program after the worker-wrapper
transformation. Absence analysis has therefore been part of GHC
since its earliest days (Peyton Jones and Partain 1994), but it has
never been formalised. In the framework of this paper, we give f a
usage signature like this:

f :: U (U ,A) ! •
The U (U ,A) indicates that the argument is a product type; that is,
a data type with just one constructor. The A (for “absent”) indicates
that f discards the second component of the product.

2

We discuss related work in Section 8. Distinctive features of our
work are (a) the notion of call demands, (b) a full implementation
measured against a state of the art optimising compiler, and (c) the
combination of simplicity with worthwhile performance improve-
ments.

2. What is Cardinality Analysis?
Cardinality analysis answers three inter-related questions, in the
setting of a non-strict, pure functional language like Haskell:
• How many times is a particular, syntactic lambda-expression

called (Section 2.1)?
• Which components of a data structure are never evaluated; that

is, are absent (Section 2.3)?
• How many times is a particular, syntactic thunk evaluated (Sec-

tion 2.4)?

2.1 Call cardinality
We saw in the introduction an example where it is helpful to
know when a function calls its argument at most once. A lambda
that is called at most once is called a one-shot lambda, and they
are extremely common in functional programming: for example a
continuation is usually one-shot. So cardinality analysis can be a
big win when optimising continuation-heavy programs.
Nor is that all. As we saw in the Introduction, inlining under a one-
shot lambda (to transform f1 into f2) allows short-cut deforesta-
tion to fuse two otherwise-separate calls of map. But short-cut de-
forestation itself introduces many calls of of the function build:
build :: (forall b. (a -> b -> b) -> b -> b) -> [a]
build g = g (:) []

You can see that build calls its argument exactly once, and inlin-
ing ys in calls like (build (\cn. ...ys...)) turns out to be
crucial to making short-cut deforestation work in practice. Gill de-
votes a section of his thesis to elucidating this point (Gill 1996,
Chapter 4.3). Gill lacked an analysis for one-shot lambdas, so his
implementation (still extant in GHC today) relies on a gross hack:
he taught GHC’s optimiser to behave specially for build itself, and
a couple of other functions. No user-defined function will have this
good behaviour. Our analysis subsumes the hack, by providing an
analysis that deduces the correct one-shot information for build,
as well as many other functions.

2.2 Currying
In a higher order language with curried functions, we need to be
careful about the details. For example, consider
f3 a = wurble a (\x.let t = costly x in \y. t+y)

wurble1 a g = g 2 a + g 3 a
wurble2 a g = sum (map (g a) [1..1000])

If wurble was wurble1, then in f3 it would be best to inline t at
its use site, thus:
f4 a = wurble1 a (\x.\y. costly x + y)

The transformed f4 is much better than f3: it avoids allocating a
thunk for t, and avoids allocating a function closure for the \y.
But if f3 called wurble2 instead, such a transformation would be
disastrous. Why? Because wurble2 applies its argument g to one
argument a, and the function thus computed is applied to each of
1000 integers. In f3 we will compute (costly a) once, but f4
will compute it 1000 times, which is arbitrarily bad.
So our analysis of wurble2 must be able to report “wurble2’s
argument g is called1 once (applied to one argument), and the

1 We will always use “called” to mean “applied to one argument”.

result is called many times”. We formalise this by giving a usage

signature to wurble, like this:

wurble1 :: U ! C
!(C 1(U)) ! •

wurble2 :: U ! C
1(C!(U)) ! •

The notation C
!(C 1(U)) is a usage demand: it describes how a

(function) value is used. The demand type U ! C
!(C 1(U)) ! •

describes how a function uses its arguments, therefore it gives a
usage demand for each argument. (The “•” has no significance; we
are just used to seeing something after the final arrow!) Informally,
the C

1(d) means “this argument is called once (applied to one
argument), and the result is used with usage d”, whereas C

!(d)
means “this argument may be called many times, with each result
used with usage d”. The U means “is used in some unknown way
(or even not used at all)”. Note that wurble1’s second argument
usage is C

!(C 1(U)), not C
!(C!(U)); that is, in all cases the

result of applying g to one argument is then called only once.

2.3 Absence
Consider this function
f x = case x of (p,q) -> <cbody>

A strictness analyser can see that f is strict in x, and so can use
call-by-value. Moreover, rather than allocate a pair that is passed to
f, which immediately takes it apart, GHC uses a worker/wrapper
transformation to pass the pieces separately, thus:
f x = case x of (p,q) -> fw p q
fw p q = <cbody>

Now f (the “wrapper”) is small, and can be inlined at f’s call
sites, often eliminating the allocation of the pair; meanwhile fw
(the “worker”) does the actual work. Strictness analysis, and the
worker/wrapper transform to exploit its results, are hugely impor-
tant to generating efficient code for lazy programs (Peyton Jones
and Partain 1994; Peyton Jones and Santos 1998).
In general, f’s right-hand side often does not have a syntacti-

cally visible case expression. For example, what if f simply
called another function g that was strict in x? Fortunately the
worker/wrapper transform is easy to generalise. Suppose the right
hand side of f was just <fbody>. Then we would transform to
f x = case x of (p,q) -> fw p q
fw p q = let x = (p,q) in <fbody>

Now we hope that the binding for x will cancel with case expres-
sions in <fbody>, and indeed it usually proves to be so (Peyton
Jones and Santos 1998).
But what if <fbody> did not use q at all? Then it would be stupid
to pass q to fw. We would rather transform to:
f x = case x of (p,q) -> fw p
fw p = let x = (p, error "urk") in <fbody>

This turns out to be very important in practice. Programmers sel-
dom write functions with wholly-unused arguments, but they fre-
quently write functions that use only part of their argument, and ig-
noring this point leads to large numbers of unused arguments being
passed around in the “optimised” program after the worker-wrapper
transformation. Absence analysis has therefore been part of GHC
since its earliest days (Peyton Jones and Partain 1994), but it has
never been formalised. In the framework of this paper, we give f a
usage signature like this:

f :: U (U ,A) ! •
The U (U ,A) indicates that the argument is a product type; that is,
a data type with just one constructor. The A (for “absent”) indicates
that f discards the second component of the product.

2

We discuss related work in Section 8. Distinctive features of our
work are (a) the notion of call demands, (b) a full implementation
measured against a state of the art optimising compiler, and (c) the
combination of simplicity with worthwhile performance improve-
ments.

2. What is Cardinality Analysis?
Cardinality analysis answers three inter-related questions, in the
setting of a non-strict, pure functional language like Haskell:
• How many times is a particular, syntactic lambda-expression

called (Section 2.1)?
• Which components of a data structure are never evaluated; that

is, are absent (Section 2.3)?
• How many times is a particular, syntactic thunk evaluated (Sec-

tion 2.4)?

2.1 Call cardinality
We saw in the introduction an example where it is helpful to
know when a function calls its argument at most once. A lambda
that is called at most once is called a one-shot lambda, and they
are extremely common in functional programming: for example a
continuation is usually one-shot. So cardinality analysis can be a
big win when optimising continuation-heavy programs.
Nor is that all. As we saw in the Introduction, inlining under a one-
shot lambda (to transform f1 into f2) allows short-cut deforesta-
tion to fuse two otherwise-separate calls of map. But short-cut de-
forestation itself introduces many calls of of the function build:
build :: (forall b. (a -> b -> b) -> b -> b) -> [a]
build g = g (:) []

You can see that build calls its argument exactly once, and inlin-
ing ys in calls like (build (\cn. ...ys...)) turns out to be
crucial to making short-cut deforestation work in practice. Gill de-
votes a section of his thesis to elucidating this point (Gill 1996,
Chapter 4.3). Gill lacked an analysis for one-shot lambdas, so his
implementation (still extant in GHC today) relies on a gross hack:
he taught GHC’s optimiser to behave specially for build itself, and
a couple of other functions. No user-defined function will have this
good behaviour. Our analysis subsumes the hack, by providing an
analysis that deduces the correct one-shot information for build,
as well as many other functions.

2.2 Currying
In a higher order language with curried functions, we need to be
careful about the details. For example, consider
f3 a = wurble a (\x.let t = costly x in \y. t+y)

wurble1 a g = g 2 a + g 3 a
wurble2 a g = sum (map (g a) [1..1000])

If wurble was wurble1, then in f3 it would be best to inline t at
its use site, thus:
f4 a = wurble1 a (\x.\y. costly x + y)

The transformed f4 is much better than f3: it avoids allocating a
thunk for t, and avoids allocating a function closure for the \y.
But if f3 called wurble2 instead, such a transformation would be
disastrous. Why? Because wurble2 applies its argument g to one
argument a, and the function thus computed is applied to each of
1000 integers. In f3 we will compute (costly a) once, but f4
will compute it 1000 times, which is arbitrarily bad.
So our analysis of wurble2 must be able to report “wurble2’s
argument g is called1 once (applied to one argument), and the

1 We will always use “called” to mean “applied to one argument”.

result is called many times”. We formalise this by giving a usage

signature to wurble, like this:

wurble1 :: U ! C
!(C 1(U)) ! •

wurble2 :: U ! C
1(C!(U)) ! •

The notation C
!(C 1(U)) is a usage demand: it describes how a

(function) value is used. The demand type U ! C
!(C 1(U)) ! •

describes how a function uses its arguments, therefore it gives a
usage demand for each argument. (The “•” has no significance; we
are just used to seeing something after the final arrow!) Informally,
the C

1(d) means “this argument is called once (applied to one
argument), and the result is used with usage d”, whereas C

!(d)
means “this argument may be called many times, with each result
used with usage d”. The U means “is used in some unknown way
(or even not used at all)”. Note that wurble1’s second argument
usage is C

!(C 1(U)), not C
!(C!(U)); that is, in all cases the

result of applying g to one argument is then called only once.

2.3 Absence
Consider this function
f x = case x of (p,q) -> <cbody>

A strictness analyser can see that f is strict in x, and so can use
call-by-value. Moreover, rather than allocate a pair that is passed to
f, which immediately takes it apart, GHC uses a worker/wrapper
transformation to pass the pieces separately, thus:
f x = case x of (p,q) -> fw p q
fw p q = <cbody>

Now f (the “wrapper”) is small, and can be inlined at f’s call
sites, often eliminating the allocation of the pair; meanwhile fw
(the “worker”) does the actual work. Strictness analysis, and the
worker/wrapper transform to exploit its results, are hugely impor-
tant to generating efficient code for lazy programs (Peyton Jones
and Partain 1994; Peyton Jones and Santos 1998).
In general, f’s right-hand side often does not have a syntacti-

cally visible case expression. For example, what if f simply
called another function g that was strict in x? Fortunately the
worker/wrapper transform is easy to generalise. Suppose the right
hand side of f was just <fbody>. Then we would transform to
f x = case x of (p,q) -> fw p q
fw p q = let x = (p,q) in <fbody>

Now we hope that the binding for x will cancel with case expres-
sions in <fbody>, and indeed it usually proves to be so (Peyton
Jones and Santos 1998).
But what if <fbody> did not use q at all? Then it would be stupid
to pass q to fw. We would rather transform to:
f x = case x of (p,q) -> fw p
fw p = let x = (p, error "urk") in <fbody>

This turns out to be very important in practice. Programmers sel-
dom write functions with wholly-unused arguments, but they fre-
quently write functions that use only part of their argument, and ig-
noring this point leads to large numbers of unused arguments being
passed around in the “optimised” program after the worker-wrapper
transformation. Absence analysis has therefore been part of GHC
since its earliest days (Peyton Jones and Partain 1994), but it has
never been formalised. In the framework of this paper, we give f a
usage signature like this:

f :: U (U ,A) ! •
The U (U ,A) indicates that the argument is a product type; that is,
a data type with just one constructor. The A (for “absent”) indicates
that f discards the second component of the product.

2

We discuss related work in Section 8. Distinctive features of our
work are (a) the notion of call demands, (b) a full implementation
measured against a state of the art optimising compiler, and (c) the
combination of simplicity with worthwhile performance improve-
ments.

2. What is Cardinality Analysis?
Cardinality analysis answers three inter-related questions, in the
setting of a non-strict, pure functional language like Haskell:
• How many times is a particular, syntactic lambda-expression

called (Section 2.1)?
• Which components of a data structure are never evaluated; that

is, are absent (Section 2.3)?
• How many times is a particular, syntactic thunk evaluated (Sec-

tion 2.4)?

2.1 Call cardinality
We saw in the introduction an example where it is helpful to
know when a function calls its argument at most once. A lambda
that is called at most once is called a one-shot lambda, and they
are extremely common in functional programming: for example a
continuation is usually one-shot. So cardinality analysis can be a
big win when optimising continuation-heavy programs.
Nor is that all. As we saw in the Introduction, inlining under a one-
shot lambda (to transform f1 into f2) allows short-cut deforesta-
tion to fuse two otherwise-separate calls of map. But short-cut de-
forestation itself introduces many calls of of the function build:
build :: (forall b. (a -> b -> b) -> b -> b) -> [a]
build g = g (:) []

You can see that build calls its argument exactly once, and inlin-
ing ys in calls like (build (\cn. ...ys...)) turns out to be
crucial to making short-cut deforestation work in practice. Gill de-
votes a section of his thesis to elucidating this point (Gill 1996,
Chapter 4.3). Gill lacked an analysis for one-shot lambdas, so his
implementation (still extant in GHC today) relies on a gross hack:
he taught GHC’s optimiser to behave specially for build itself, and
a couple of other functions. No user-defined function will have this
good behaviour. Our analysis subsumes the hack, by providing an
analysis that deduces the correct one-shot information for build,
as well as many other functions.

2.2 Currying
In a higher order language with curried functions, we need to be
careful about the details. For example, consider
f3 a = wurble a (\x.let t = costly x in \y. t+y)

wurble1 a g = g 2 a + g 3 a
wurble2 a g = sum (map (g a) [1..1000])

If wurble was wurble1, then in f3 it would be best to inline t at
its use site, thus:
f4 a = wurble1 a (\x.\y. costly x + y)

The transformed f4 is much better than f3: it avoids allocating a
thunk for t, and avoids allocating a function closure for the \y.
But if f3 called wurble2 instead, such a transformation would be
disastrous. Why? Because wurble2 applies its argument g to one
argument a, and the function thus computed is applied to each of
1000 integers. In f3 we will compute (costly a) once, but f4
will compute it 1000 times, which is arbitrarily bad.
So our analysis of wurble2 must be able to report “wurble2’s
argument g is called1 once (applied to one argument), and the

1 We will always use “called” to mean “applied to one argument”.

result is called many times”. We formalise this by giving a usage

signature to wurble, like this:

wurble1 :: U ! C
!(C 1(U)) ! •

wurble2 :: U ! C
1(C!(U)) ! •

The notation C
!(C 1(U)) is a usage demand: it describes how a

(function) value is used. The demand type U ! C
!(C 1(U)) ! •

describes how a function uses its arguments, therefore it gives a
usage demand for each argument. (The “•” has no significance; we
are just used to seeing something after the final arrow!) Informally,
the C

1(d) means “this argument is called once (applied to one
argument), and the result is used with usage d”, whereas C

!(d)
means “this argument may be called many times, with each result
used with usage d”. The U means “is used in some unknown way
(or even not used at all)”. Note that wurble1’s second argument
usage is C

!(C 1(U)), not C
!(C!(U)); that is, in all cases the

result of applying g to one argument is then called only once.

2.3 Absence
Consider this function
f x = case x of (p,q) -> <cbody>

A strictness analyser can see that f is strict in x, and so can use
call-by-value. Moreover, rather than allocate a pair that is passed to
f, which immediately takes it apart, GHC uses a worker/wrapper
transformation to pass the pieces separately, thus:
f x = case x of (p,q) -> fw p q
fw p q = <cbody>

Now f (the “wrapper”) is small, and can be inlined at f’s call
sites, often eliminating the allocation of the pair; meanwhile fw
(the “worker”) does the actual work. Strictness analysis, and the
worker/wrapper transform to exploit its results, are hugely impor-
tant to generating efficient code for lazy programs (Peyton Jones
and Partain 1994; Peyton Jones and Santos 1998).
In general, f’s right-hand side often does not have a syntacti-

cally visible case expression. For example, what if f simply
called another function g that was strict in x? Fortunately the
worker/wrapper transform is easy to generalise. Suppose the right
hand side of f was just <fbody>. Then we would transform to
f x = case x of (p,q) -> fw p q
fw p q = let x = (p,q) in <fbody>

Now we hope that the binding for x will cancel with case expres-
sions in <fbody>, and indeed it usually proves to be so (Peyton
Jones and Santos 1998).
But what if <fbody> did not use q at all? Then it would be stupid
to pass q to fw. We would rather transform to:
f x = case x of (p,q) -> fw p
fw p = let x = (p, error "urk") in <fbody>

This turns out to be very important in practice. Programmers sel-
dom write functions with wholly-unused arguments, but they fre-
quently write functions that use only part of their argument, and ig-
noring this point leads to large numbers of unused arguments being
passed around in the “optimised” program after the worker-wrapper
transformation. Absence analysis has therefore been part of GHC
since its earliest days (Peyton Jones and Partain 1994), but it has
never been formalised. In the framework of this paper, we give f a
usage signature like this:

f :: U (U ,A) ! •
The U (U ,A) indicates that the argument is a product type; that is,
a data type with just one constructor. The A (for “absent”) indicates
that f discards the second component of the product.

2

“wrapper”, usually inlined on-site

“worker”

“worker-wrapper” split

Optimisation 2

We discuss related work in Section 8. Distinctive features of our
work are (a) the notion of call demands, (b) a full implementation
measured against a state of the art optimising compiler, and (c) the
combination of simplicity with worthwhile performance improve-
ments.

2. What is Cardinality Analysis?
Cardinality analysis answers three inter-related questions, in the
setting of a non-strict, pure functional language like Haskell:
• How many times is a particular, syntactic lambda-expression

called (Section 2.1)?
• Which components of a data structure are never evaluated; that

is, are absent (Section 2.3)?
• How many times is a particular, syntactic thunk evaluated (Sec-

tion 2.4)?

2.1 Call cardinality
We saw in the introduction an example where it is helpful to
know when a function calls its argument at most once. A lambda
that is called at most once is called a one-shot lambda, and they
are extremely common in functional programming: for example a
continuation is usually one-shot. So cardinality analysis can be a
big win when optimising continuation-heavy programs.
Nor is that all. As we saw in the Introduction, inlining under a one-
shot lambda (to transform f1 into f2) allows short-cut deforesta-
tion to fuse two otherwise-separate calls of map. But short-cut de-
forestation itself introduces many calls of of the function build:
build :: (forall b. (a -> b -> b) -> b -> b) -> [a]
build g = g (:) []

You can see that build calls its argument exactly once, and inlin-
ing ys in calls like (build (\cn. ...ys...)) turns out to be
crucial to making short-cut deforestation work in practice. Gill de-
votes a section of his thesis to elucidating this point (Gill 1996,
Chapter 4.3). Gill lacked an analysis for one-shot lambdas, so his
implementation (still extant in GHC today) relies on a gross hack:
he taught GHC’s optimiser to behave specially for build itself, and
a couple of other functions. No user-defined function will have this
good behaviour. Our analysis subsumes the hack, by providing an
analysis that deduces the correct one-shot information for build,
as well as many other functions.

2.2 Currying
In a higher order language with curried functions, we need to be
careful about the details. For example, consider
f3 a = wurble a (\x.let t = costly x in \y. t+y)

wurble1 a g = g 2 a + g 3 a
wurble2 a g = sum (map (g a) [1..1000])

If wurble was wurble1, then in f3 it would be best to inline t at
its use site, thus:
f4 a = wurble1 a (\x.\y. costly x + y)

The transformed f4 is much better than f3: it avoids allocating a
thunk for t, and avoids allocating a function closure for the \y.
But if f3 called wurble2 instead, such a transformation would be
disastrous. Why? Because wurble2 applies its argument g to one
argument a, and the function thus computed is applied to each of
1000 integers. In f3 we will compute (costly a) once, but f4
will compute it 1000 times, which is arbitrarily bad.
So our analysis of wurble2 must be able to report “wurble2’s
argument g is called1 once (applied to one argument), and the

1 We will always use “called” to mean “applied to one argument”.

result is called many times”. We formalise this by giving a usage

signature to wurble, like this:

wurble1 :: U ! C
!(C 1(U)) ! •

wurble2 :: U ! C
1(C!(U)) ! •

The notation C
!(C 1(U)) is a usage demand: it describes how a

(function) value is used. The demand type U ! C
!(C 1(U)) ! •

describes how a function uses its arguments, therefore it gives a
usage demand for each argument. (The “•” has no significance; we
are just used to seeing something after the final arrow!) Informally,
the C

1(d) means “this argument is called once (applied to one
argument), and the result is used with usage d”, whereas C

!(d)
means “this argument may be called many times, with each result
used with usage d”. The U means “is used in some unknown way
(or even not used at all)”. Note that wurble1’s second argument
usage is C

!(C 1(U)), not C
!(C!(U)); that is, in all cases the

result of applying g to one argument is then called only once.

2.3 Absence
Consider this function
f x = case x of (p,q) -> <cbody>

A strictness analyser can see that f is strict in x, and so can use
call-by-value. Moreover, rather than allocate a pair that is passed to
f, which immediately takes it apart, GHC uses a worker/wrapper
transformation to pass the pieces separately, thus:
f x = case x of (p,q) -> fw p q
fw p q = <cbody>

Now f (the “wrapper”) is small, and can be inlined at f’s call
sites, often eliminating the allocation of the pair; meanwhile fw
(the “worker”) does the actual work. Strictness analysis, and the
worker/wrapper transform to exploit its results, are hugely impor-
tant to generating efficient code for lazy programs (Peyton Jones
and Partain 1994; Peyton Jones and Santos 1998).
In general, f’s right-hand side often does not have a syntacti-

cally visible case expression. For example, what if f simply
called another function g that was strict in x? Fortunately the
worker/wrapper transform is easy to generalise. Suppose the right
hand side of f was just <fbody>. Then we would transform to
f x = case x of (p,q) -> fw p q
fw p q = let x = (p,q) in <fbody>

Now we hope that the binding for x will cancel with case expres-
sions in <fbody>, and indeed it usually proves to be so (Peyton
Jones and Santos 1998).
But what if <fbody> did not use q at all? Then it would be stupid
to pass q to fw. We would rather transform to:
f x = case x of (p,q) -> fw p
fw p = let x = (p, error "urk") in <fbody>

This turns out to be very important in practice. Programmers sel-
dom write functions with wholly-unused arguments, but they fre-
quently write functions that use only part of their argument, and ig-
noring this point leads to large numbers of unused arguments being
passed around in the “optimised” program after the worker-wrapper
transformation. Absence analysis has therefore been part of GHC
since its earliest days (Peyton Jones and Partain 1994), but it has
never been formalised. In the framework of this paper, we give f a
usage signature like this:

f :: U (U ,A) ! •
The U (U ,A) indicates that the argument is a product type; that is,
a data type with just one constructor. The A (for “absent”) indicates
that f discards the second component of the product.

2

We discuss related work in Section 8. Distinctive features of our
work are (a) the notion of call demands, (b) a full implementation
measured against a state of the art optimising compiler, and (c) the
combination of simplicity with worthwhile performance improve-
ments.

2. What is Cardinality Analysis?
Cardinality analysis answers three inter-related questions, in the
setting of a non-strict, pure functional language like Haskell:
• How many times is a particular, syntactic lambda-expression

called (Section 2.1)?
• Which components of a data structure are never evaluated; that

is, are absent (Section 2.3)?
• How many times is a particular, syntactic thunk evaluated (Sec-

tion 2.4)?

2.1 Call cardinality
We saw in the introduction an example where it is helpful to
know when a function calls its argument at most once. A lambda
that is called at most once is called a one-shot lambda, and they
are extremely common in functional programming: for example a
continuation is usually one-shot. So cardinality analysis can be a
big win when optimising continuation-heavy programs.
Nor is that all. As we saw in the Introduction, inlining under a one-
shot lambda (to transform f1 into f2) allows short-cut deforesta-
tion to fuse two otherwise-separate calls of map. But short-cut de-
forestation itself introduces many calls of of the function build:
build :: (forall b. (a -> b -> b) -> b -> b) -> [a]
build g = g (:) []

You can see that build calls its argument exactly once, and inlin-
ing ys in calls like (build (\cn. ...ys...)) turns out to be
crucial to making short-cut deforestation work in practice. Gill de-
votes a section of his thesis to elucidating this point (Gill 1996,
Chapter 4.3). Gill lacked an analysis for one-shot lambdas, so his
implementation (still extant in GHC today) relies on a gross hack:
he taught GHC’s optimiser to behave specially for build itself, and
a couple of other functions. No user-defined function will have this
good behaviour. Our analysis subsumes the hack, by providing an
analysis that deduces the correct one-shot information for build,
as well as many other functions.

2.2 Currying
In a higher order language with curried functions, we need to be
careful about the details. For example, consider
f3 a = wurble a (\x.let t = costly x in \y. t+y)

wurble1 a g = g 2 a + g 3 a
wurble2 a g = sum (map (g a) [1..1000])

If wurble was wurble1, then in f3 it would be best to inline t at
its use site, thus:
f4 a = wurble1 a (\x.\y. costly x + y)

The transformed f4 is much better than f3: it avoids allocating a
thunk for t, and avoids allocating a function closure for the \y.
But if f3 called wurble2 instead, such a transformation would be
disastrous. Why? Because wurble2 applies its argument g to one
argument a, and the function thus computed is applied to each of
1000 integers. In f3 we will compute (costly a) once, but f4
will compute it 1000 times, which is arbitrarily bad.
So our analysis of wurble2 must be able to report “wurble2’s
argument g is called1 once (applied to one argument), and the

1 We will always use “called” to mean “applied to one argument”.

result is called many times”. We formalise this by giving a usage

signature to wurble, like this:

wurble1 :: U ! C
!(C 1(U)) ! •

wurble2 :: U ! C
1(C!(U)) ! •

The notation C
!(C 1(U)) is a usage demand: it describes how a

(function) value is used. The demand type U ! C
!(C 1(U)) ! •

describes how a function uses its arguments, therefore it gives a
usage demand for each argument. (The “•” has no significance; we
are just used to seeing something after the final arrow!) Informally,
the C

1(d) means “this argument is called once (applied to one
argument), and the result is used with usage d”, whereas C

!(d)
means “this argument may be called many times, with each result
used with usage d”. The U means “is used in some unknown way
(or even not used at all)”. Note that wurble1’s second argument
usage is C

!(C 1(U)), not C
!(C!(U)); that is, in all cases the

result of applying g to one argument is then called only once.

2.3 Absence
Consider this function
f x = case x of (p,q) -> <cbody>

A strictness analyser can see that f is strict in x, and so can use
call-by-value. Moreover, rather than allocate a pair that is passed to
f, which immediately takes it apart, GHC uses a worker/wrapper
transformation to pass the pieces separately, thus:
f x = case x of (p,q) -> fw p q
fw p q = <cbody>

Now f (the “wrapper”) is small, and can be inlined at f’s call
sites, often eliminating the allocation of the pair; meanwhile fw
(the “worker”) does the actual work. Strictness analysis, and the
worker/wrapper transform to exploit its results, are hugely impor-
tant to generating efficient code for lazy programs (Peyton Jones
and Partain 1994; Peyton Jones and Santos 1998).
In general, f’s right-hand side often does not have a syntacti-

cally visible case expression. For example, what if f simply
called another function g that was strict in x? Fortunately the
worker/wrapper transform is easy to generalise. Suppose the right
hand side of f was just <fbody>. Then we would transform to
f x = case x of (p,q) -> fw p q
fw p q = let x = (p,q) in <fbody>

Now we hope that the binding for x will cancel with case expres-
sions in <fbody>, and indeed it usually proves to be so (Peyton
Jones and Santos 1998).
But what if <fbody> did not use q at all? Then it would be stupid
to pass q to fw. We would rather transform to:
f x = case x of (p,q) -> fw p
fw p = let x = (p, error "urk") in <fbody>

This turns out to be very important in practice. Programmers sel-
dom write functions with wholly-unused arguments, but they fre-
quently write functions that use only part of their argument, and ig-
noring this point leads to large numbers of unused arguments being
passed around in the “optimised” program after the worker-wrapper
transformation. Absence analysis has therefore been part of GHC
since its earliest days (Peyton Jones and Partain 1994), but it has
never been formalised. In the framework of this paper, we give f a
usage signature like this:

f :: U (U ,A) ! •
The U (U ,A) indicates that the argument is a product type; that is,
a data type with just one constructor. The A (for “absent”) indicates
that f discards the second component of the product.

2

We discuss related work in Section 8. Distinctive features of our
work are (a) the notion of call demands, (b) a full implementation
measured against a state of the art optimising compiler, and (c) the
combination of simplicity with worthwhile performance improve-
ments.

2. What is Cardinality Analysis?
Cardinality analysis answers three inter-related questions, in the
setting of a non-strict, pure functional language like Haskell:
• How many times is a particular, syntactic lambda-expression

called (Section 2.1)?
• Which components of a data structure are never evaluated; that

is, are absent (Section 2.3)?
• How many times is a particular, syntactic thunk evaluated (Sec-

tion 2.4)?

2.1 Call cardinality
We saw in the introduction an example where it is helpful to
know when a function calls its argument at most once. A lambda
that is called at most once is called a one-shot lambda, and they
are extremely common in functional programming: for example a
continuation is usually one-shot. So cardinality analysis can be a
big win when optimising continuation-heavy programs.
Nor is that all. As we saw in the Introduction, inlining under a one-
shot lambda (to transform f1 into f2) allows short-cut deforesta-
tion to fuse two otherwise-separate calls of map. But short-cut de-
forestation itself introduces many calls of of the function build:
build :: (forall b. (a -> b -> b) -> b -> b) -> [a]
build g = g (:) []

You can see that build calls its argument exactly once, and inlin-
ing ys in calls like (build (\cn. ...ys...)) turns out to be
crucial to making short-cut deforestation work in practice. Gill de-
votes a section of his thesis to elucidating this point (Gill 1996,
Chapter 4.3). Gill lacked an analysis for one-shot lambdas, so his
implementation (still extant in GHC today) relies on a gross hack:
he taught GHC’s optimiser to behave specially for build itself, and
a couple of other functions. No user-defined function will have this
good behaviour. Our analysis subsumes the hack, by providing an
analysis that deduces the correct one-shot information for build,
as well as many other functions.

2.2 Currying
In a higher order language with curried functions, we need to be
careful about the details. For example, consider
f3 a = wurble a (\x.let t = costly x in \y. t+y)

wurble1 a g = g 2 a + g 3 a
wurble2 a g = sum (map (g a) [1..1000])

If wurble was wurble1, then in f3 it would be best to inline t at
its use site, thus:
f4 a = wurble1 a (\x.\y. costly x + y)

The transformed f4 is much better than f3: it avoids allocating a
thunk for t, and avoids allocating a function closure for the \y.
But if f3 called wurble2 instead, such a transformation would be
disastrous. Why? Because wurble2 applies its argument g to one
argument a, and the function thus computed is applied to each of
1000 integers. In f3 we will compute (costly a) once, but f4
will compute it 1000 times, which is arbitrarily bad.
So our analysis of wurble2 must be able to report “wurble2’s
argument g is called1 once (applied to one argument), and the

1 We will always use “called” to mean “applied to one argument”.

result is called many times”. We formalise this by giving a usage

signature to wurble, like this:

wurble1 :: U ! C
!(C 1(U)) ! •

wurble2 :: U ! C
1(C!(U)) ! •

The notation C
!(C 1(U)) is a usage demand: it describes how a

(function) value is used. The demand type U ! C
!(C 1(U)) ! •

describes how a function uses its arguments, therefore it gives a
usage demand for each argument. (The “•” has no significance; we
are just used to seeing something after the final arrow!) Informally,
the C

1(d) means “this argument is called once (applied to one
argument), and the result is used with usage d”, whereas C

!(d)
means “this argument may be called many times, with each result
used with usage d”. The U means “is used in some unknown way
(or even not used at all)”. Note that wurble1’s second argument
usage is C

!(C 1(U)), not C
!(C!(U)); that is, in all cases the

result of applying g to one argument is then called only once.

2.3 Absence
Consider this function
f x = case x of (p,q) -> <cbody>

A strictness analyser can see that f is strict in x, and so can use
call-by-value. Moreover, rather than allocate a pair that is passed to
f, which immediately takes it apart, GHC uses a worker/wrapper
transformation to pass the pieces separately, thus:
f x = case x of (p,q) -> fw p q
fw p q = <cbody>

Now f (the “wrapper”) is small, and can be inlined at f’s call
sites, often eliminating the allocation of the pair; meanwhile fw
(the “worker”) does the actual work. Strictness analysis, and the
worker/wrapper transform to exploit its results, are hugely impor-
tant to generating efficient code for lazy programs (Peyton Jones
and Partain 1994; Peyton Jones and Santos 1998).
In general, f’s right-hand side often does not have a syntacti-

cally visible case expression. For example, what if f simply
called another function g that was strict in x? Fortunately the
worker/wrapper transform is easy to generalise. Suppose the right
hand side of f was just <fbody>. Then we would transform to
f x = case x of (p,q) -> fw p q
fw p q = let x = (p,q) in <fbody>

Now we hope that the binding for x will cancel with case expres-
sions in <fbody>, and indeed it usually proves to be so (Peyton
Jones and Santos 1998).
But what if <fbody> did not use q at all? Then it would be stupid
to pass q to fw. We would rather transform to:
f x = case x of (p,q) -> fw p
fw p = let x = (p, error "urk") in <fbody>

This turns out to be very important in practice. Programmers sel-
dom write functions with wholly-unused arguments, but they fre-
quently write functions that use only part of their argument, and ig-
noring this point leads to large numbers of unused arguments being
passed around in the “optimised” program after the worker-wrapper
transformation. Absence analysis has therefore been part of GHC
since its earliest days (Peyton Jones and Partain 1994), but it has
never been formalised. In the framework of this paper, we give f a
usage signature like this:

f :: U (U ,A) ! •
The U (U ,A) indicates that the argument is a product type; that is,
a data type with just one constructor. The A (for “absent”) indicates
that f discards the second component of the product.

2

We discuss related work in Section 8. Distinctive features of our
work are (a) the notion of call demands, (b) a full implementation
measured against a state of the art optimising compiler, and (c) the
combination of simplicity with worthwhile performance improve-
ments.

2. What is Cardinality Analysis?
Cardinality analysis answers three inter-related questions, in the
setting of a non-strict, pure functional language like Haskell:
• How many times is a particular, syntactic lambda-expression

called (Section 2.1)?
• Which components of a data structure are never evaluated; that

is, are absent (Section 2.3)?
• How many times is a particular, syntactic thunk evaluated (Sec-

tion 2.4)?

2.1 Call cardinality
We saw in the introduction an example where it is helpful to
know when a function calls its argument at most once. A lambda
that is called at most once is called a one-shot lambda, and they
are extremely common in functional programming: for example a
continuation is usually one-shot. So cardinality analysis can be a
big win when optimising continuation-heavy programs.
Nor is that all. As we saw in the Introduction, inlining under a one-
shot lambda (to transform f1 into f2) allows short-cut deforesta-
tion to fuse two otherwise-separate calls of map. But short-cut de-
forestation itself introduces many calls of of the function build:
build :: (forall b. (a -> b -> b) -> b -> b) -> [a]
build g = g (:) []

You can see that build calls its argument exactly once, and inlin-
ing ys in calls like (build (\cn. ...ys...)) turns out to be
crucial to making short-cut deforestation work in practice. Gill de-
votes a section of his thesis to elucidating this point (Gill 1996,
Chapter 4.3). Gill lacked an analysis for one-shot lambdas, so his
implementation (still extant in GHC today) relies on a gross hack:
he taught GHC’s optimiser to behave specially for build itself, and
a couple of other functions. No user-defined function will have this
good behaviour. Our analysis subsumes the hack, by providing an
analysis that deduces the correct one-shot information for build,
as well as many other functions.

2.2 Currying
In a higher order language with curried functions, we need to be
careful about the details. For example, consider
f3 a = wurble a (\x.let t = costly x in \y. t+y)

wurble1 a g = g 2 a + g 3 a
wurble2 a g = sum (map (g a) [1..1000])

If wurble was wurble1, then in f3 it would be best to inline t at
its use site, thus:
f4 a = wurble1 a (\x.\y. costly x + y)

The transformed f4 is much better than f3: it avoids allocating a
thunk for t, and avoids allocating a function closure for the \y.
But if f3 called wurble2 instead, such a transformation would be
disastrous. Why? Because wurble2 applies its argument g to one
argument a, and the function thus computed is applied to each of
1000 integers. In f3 we will compute (costly a) once, but f4
will compute it 1000 times, which is arbitrarily bad.
So our analysis of wurble2 must be able to report “wurble2’s
argument g is called1 once (applied to one argument), and the

1 We will always use “called” to mean “applied to one argument”.

result is called many times”. We formalise this by giving a usage

signature to wurble, like this:

wurble1 :: U ! C
!(C 1(U)) ! •

wurble2 :: U ! C
1(C!(U)) ! •

The notation C
!(C 1(U)) is a usage demand: it describes how a

(function) value is used. The demand type U ! C
!(C 1(U)) ! •

describes how a function uses its arguments, therefore it gives a
usage demand for each argument. (The “•” has no significance; we
are just used to seeing something after the final arrow!) Informally,
the C

1(d) means “this argument is called once (applied to one
argument), and the result is used with usage d”, whereas C

!(d)
means “this argument may be called many times, with each result
used with usage d”. The U means “is used in some unknown way
(or even not used at all)”. Note that wurble1’s second argument
usage is C

!(C 1(U)), not C
!(C!(U)); that is, in all cases the

result of applying g to one argument is then called only once.

2.3 Absence
Consider this function
f x = case x of (p,q) -> <cbody>

A strictness analyser can see that f is strict in x, and so can use
call-by-value. Moreover, rather than allocate a pair that is passed to
f, which immediately takes it apart, GHC uses a worker/wrapper
transformation to pass the pieces separately, thus:
f x = case x of (p,q) -> fw p q
fw p q = <cbody>

Now f (the “wrapper”) is small, and can be inlined at f’s call
sites, often eliminating the allocation of the pair; meanwhile fw
(the “worker”) does the actual work. Strictness analysis, and the
worker/wrapper transform to exploit its results, are hugely impor-
tant to generating efficient code for lazy programs (Peyton Jones
and Partain 1994; Peyton Jones and Santos 1998).
In general, f’s right-hand side often does not have a syntacti-

cally visible case expression. For example, what if f simply
called another function g that was strict in x? Fortunately the
worker/wrapper transform is easy to generalise. Suppose the right
hand side of f was just <fbody>. Then we would transform to
f x = case x of (p,q) -> fw p q
fw p q = let x = (p,q) in <fbody>

Now we hope that the binding for x will cancel with case expres-
sions in <fbody>, and indeed it usually proves to be so (Peyton
Jones and Santos 1998).
But what if <fbody> did not use q at all? Then it would be stupid
to pass q to fw. We would rather transform to:
f x = case x of (p,q) -> fw p
fw p = let x = (p, error "urk") in <fbody>

This turns out to be very important in practice. Programmers sel-
dom write functions with wholly-unused arguments, but they fre-
quently write functions that use only part of their argument, and ig-
noring this point leads to large numbers of unused arguments being
passed around in the “optimised” program after the worker-wrapper
transformation. Absence analysis has therefore been part of GHC
since its earliest days (Peyton Jones and Partain 1994), but it has
never been formalised. In the framework of this paper, we give f a
usage signature like this:

f :: U (U ,A) ! •
The U (U ,A) indicates that the argument is a product type; that is,
a data type with just one constructor. The A (for “absent”) indicates
that f discards the second component of the product.

2

What if q is never used in <cbody>?

Don’t have to pass q to fw!

“worker-wrapper” split

Optimisation 2

Which parts of
a data structure are
certainly not used?

(absence)

smart memoisation

2.4 Thunk cardinality
Consider these definitions

f :: Int -> Int -> Int
f x c = if x > 0 then c + 1 else

if x == 0 then 0 else c - 1

g y = f y (costly y)

Since f is not strict in c, g must build a thunk for (costly y) to
pass to f. In call-by-need evaluation, thunks are memoised. That
is, when a thunk is evaluated at run-time, it is overwritten with the
value so that if it is evaluated a second time the already-computed
value can be returned immediately. But in this case we can see
that f never evaluates its second argument more than once, so
the memoisation step is entirely wasted. We call these single-entry

thunks.
Memoisation is not expensive, but it is certainly not free. Opera-
tionally, a pointer to the thunk must be pushed on the stack when
evaluation starts, it must be black-holed to avoid space leaks (Jones
1992), and the update involves a memory write. If cardinality anal-
ysis can identify single-entry thunks, as well as one-shot lambdas,
that would be a Good Thing. And so it can: we give f the usage
signature:

f :: !⇤U ! 1⇤U ! •
The “!⇤” modifier says that f may evaluate its first argument more
than once, while the “1⇤” says that it evaluates its second argument
at most once.

2.5 Call vs evaluation
For functions, there is a difference between being evaluated once
and called once, because of Haskell’s seq function. For example:

f1 g = g ‘seq‘ 1 -- f1 :: 1⇤U ! •
f2 g = g ‘seq‘ g 2 -- f2 :: !⇤C 1(U) ! •
f3 g = g 3 -- f3 :: 1⇤C 1(U) ! •

The function seq evaluates its first argument (to head-normal form)
and returns its second argument. If its first argument is a function,
the function is evaluated to a lambda, but not called. Notice that
f2’s usage type says that g is evaluated more than once, but applied
only once. For example consider the call

f (\x. x + y)

How many times is y evaluated? For f equal to f1 the answer is
zero; for f2 and f3 it is one.

3. Formalising Cardinality Analysis
We now present our analysis in detail. The syntax of the language
we analyse is given in Figure 1. It is quite conventional: just lambda
calculus with pairs and (non-recursive) let-expressions. Constants
 include literals and primitive functions over literals, as well as
Haskell’s built-in seq. We use A-normal form (Sabry and Felleisen
1992) so that the issues concerning thunks show up only for let
and not also for function arguments.

3.1 Usage demands
Our cardinality analysis is a backwards analysis over an abstract
domain of usage demands. As with any such analysis, the abstract
domain embodies a balance between the cost of the analysis and
its precision. Our particular choices are expressed in the syntax of
usage demands, given in Figure 1. A usage demand d is one of the
following:
• U (d†

1 , d
†
2) applies to pairs. The pair itself is evaluated and its

first component is used as described by d
†
1 and its second by d

†
2 .

Expressions and values
e ::= x | v | e x | let x = e1 in e2

| case e1 of (x1, x2) ! e2

v ::= | �x.e | (x1, x2)
Annotated expressions and values

e ::= x | v | e x | let x
m
= e1 in e2

| case e1 of (x1, x2) ! e2

v ::= | �m
x.e | (x1, x2)

Usage demands and multi-demands
d ::= C

n(d) | U (d†
1 , d

†
2) | U | HU

d
† ::= A | n⇤d
n ::= 1 | !
m ::= 0 | 1 | !

Non-syntactic demand equalities
C

!(U) ⌘ U

U (!⇤U ,!⇤U) ⌘ U

U (A,A) ⌘ HU

Usage types
⌧ ::= • | d† ! ⌧

Usage type expansion
d
† ! ⌧ � d

† ! ⌧
• � !⇤U ! •

Free-variable usage environments (fv-usage)
' ::= (x :d†),' | ✏

Auxiliary notation on environments
'(x) = d

† when (x :d†) 2 '
A otherwise

Usage signatures and signature environments
⇢ ::= hk ; ⌧ ; 'i k 2 Z>0

P ::= (x :⇢),P | ✏

transform(hk ; ⌧ ; 'i, d)
= h⌧ ; 'i if d v C

1(. . . k -fold . . .C 1(U))
= h!⇤⌧ ; !⇤'i otherwise

Figure 1: Syntax of terms, values, usage types, and environments

• C
n(d) applies to functions. The function is called at most n

times, and on each call the result is used as described by d .
Call demands are, to the best of our knowledge, new.

• U , or “used”, indicating no information; the demand can use
the value in an arbitrary way.

• HU , or “head-used”, is a special case; it is the demand that seq
places on its first argument: seq ::HU ! U ! •.

A usage demand d always uses the root of the value exactly once;
it cannot express absence or multiple evaluation. That is done by
d
†, which is either A (absent), or n ⇤d indicating that the value is

used at most n times in a way described by d . In both C
n(d) and

n⇤d , the multiplicity n is either 1 or ! (meaning “many”). Notice
that a call demand C

n(d) has a d inside it, not a d
†: if a function

is called, its body is evaluated exactly once. This is different from
pairs. For example, if we have

let x = (e1, e2) in fst x + fst x

then e1 is evaluated twice.

Both U and HU come with some non-syntactic equalities, denoted
by ⌘ in Figure 1 and necessary for the proof of well-typedness
(Section 4). For example, U is equivalent to a pair demand whose
components are used many times, or a many-call-demand where
the result is used in an arbitrary way. Similarly, for pairs HU is
equivalent to U (A,A), while for functions HU is equivalent to
C

0(A), if we had such a thing. In the rest of the paper all definitions

3

Will be used exactly once:
no need to memoize!

Optimisation 3

Which parts
of a data structure

are used no more than once?

(thunk cardinality)

Cardinality Analysis

• Call cardinality

• Absence

• Thunk cardinality

(how a value is used)
Usage demands

2.4 Thunk cardinality
Consider these definitions

f :: Int -> Int -> Int
f x c = if x > 0 then c + 1 else

if x == 0 then 0 else c - 1

g y = f y (costly y)

Since f is not strict in c, g must build a thunk for (costly y) to
pass to f. In call-by-need evaluation, thunks are memoised. That
is, when a thunk is evaluated at run-time, it is overwritten with the
value so that if it is evaluated a second time the already-computed
value can be returned immediately. But in this case we can see
that f never evaluates its second argument more than once, so
the memoisation step is entirely wasted. We call these single-entry

thunks.
Memoisation is not expensive, but it is certainly not free. Opera-
tionally, a pointer to the thunk must be pushed on the stack when
evaluation starts, it must be black-holed to avoid space leaks (Jones
1992), and the update involves a memory write. If cardinality anal-
ysis can identify single-entry thunks, as well as one-shot lambdas,
that would be a Good Thing. And so it can: we give f the usage
signature:

f :: !⇤U ! 1⇤U ! •
The “!⇤” modifier says that f may evaluate its first argument more
than once, while the “1⇤” says that it evaluates its second argument
at most once.

2.5 Call vs evaluation
For functions, there is a difference between being evaluated once
and called once, because of Haskell’s seq function. For example:

f1 g = g ‘seq‘ 1 -- f1 :: 1⇤U ! •
f2 g = g ‘seq‘ g 2 -- f2 :: !⇤C 1(U) ! •
f3 g = g 3 -- f3 :: 1⇤C 1(U) ! •

The function seq evaluates its first argument (to head-normal form)
and returns its second argument. If its first argument is a function,
the function is evaluated to a lambda, but not called. Notice that
f2’s usage type says that g is evaluated more than once, but applied
only once. For example consider the call

f (\x. x + y)

How many times is y evaluated? For f equal to f1 the answer is
zero; for f2 and f3 it is one.

3. Formalising Cardinality Analysis
We now present our analysis in detail. The syntax of the language
we analyse is given in Figure 1. It is quite conventional: just lambda
calculus with pairs and (non-recursive) let-expressions. Constants
 include literals and primitive functions over literals, as well as
Haskell’s built-in seq. We use A-normal form (Sabry and Felleisen
1992) so that the issues concerning thunks show up only for let
and not also for function arguments.

3.1 Usage demands
Our cardinality analysis is a backwards analysis over an abstract
domain of usage demands. As with any such analysis, the abstract
domain embodies a balance between the cost of the analysis and
its precision. Our particular choices are expressed in the syntax of
usage demands, given in Figure 1. A usage demand d is one of the
following:
• U (d†

1 , d
†
2) applies to pairs. The pair itself is evaluated and its

first component is used as described by d
†
1 and its second by d

†
2 .

Expressions and values
e ::= x | v | e x | let x = e1 in e2

| case e1 of (x1, x2) ! e2

v ::= | �x.e | (x1, x2)
Annotated expressions and values

e ::= x | v | e x | let x
m
= e1 in e2

| case e1 of (x1, x2) ! e2

v ::= | �m
x.e | (x1, x2)

Usage demands and multi-demands
d ::= C

n(d) | U (d†
1 , d

†
2) | U | HU

d
† ::= A | n⇤d
n ::= 1 | !
m ::= 0 | 1 | !

Non-syntactic demand equalities
C

!(U) ⌘ U

U (!⇤U ,!⇤U) ⌘ U

U (A,A) ⌘ HU

Usage types
⌧ ::= • | d† ! ⌧

Usage type expansion
d
† ! ⌧ � d

† ! ⌧
• � !⇤U ! •

Free-variable usage environments (fv-usage)
' ::= (x :d†),' | ✏

Auxiliary notation on environments
'(x) = d

† when (x :d†) 2 '
A otherwise

Usage signatures and signature environments
⇢ ::= hk ; ⌧ ; 'i k 2 Z>0

P ::= (x :⇢),P | ✏

transform(hk ; ⌧ ; 'i, d)
= h⌧ ; 'i if d v C

1(. . . k -fold . . .C 1(U))
= h!⇤⌧ ; !⇤'i otherwise

Figure 1: Syntax of terms, values, usage types, and environments

• C
n(d) applies to functions. The function is called at most n

times, and on each call the result is used as described by d .
Call demands are, to the best of our knowledge, new.

• U , or “used”, indicating no information; the demand can use
the value in an arbitrary way.

• HU , or “head-used”, is a special case; it is the demand that seq
places on its first argument: seq ::HU ! U ! •.

A usage demand d always uses the root of the value exactly once;
it cannot express absence or multiple evaluation. That is done by
d
†, which is either A (absent), or n ⇤d indicating that the value is

used at most n times in a way described by d . In both C
n(d) and

n⇤d , the multiplicity n is either 1 or ! (meaning “many”). Notice
that a call demand C

n(d) has a d inside it, not a d
†: if a function

is called, its body is evaluated exactly once. This is different from
pairs. For example, if we have

let x = (e1, e2) in fst x + fst x

then e1 is evaluated twice.

Both U and HU come with some non-syntactic equalities, denoted
by ⌘ in Figure 1 and necessary for the proof of well-typedness
(Section 4). For example, U is equivalent to a pair demand whose
components are used many times, or a many-call-demand where
the result is used in an arbitrary way. Similarly, for pairs HU is
equivalent to U (A,A), while for functions HU is equivalent to
C

0(A), if we had such a thing. In the rest of the paper all definitions

3

Cardinality demands

2.4 Thunk cardinality
Consider these definitions

f :: Int -> Int -> Int
f x c = if x > 0 then c + 1 else

if x == 0 then 0 else c - 1

g y = f y (costly y)

Since f is not strict in c, g must build a thunk for (costly y) to
pass to f. In call-by-need evaluation, thunks are memoised. That
is, when a thunk is evaluated at run-time, it is overwritten with the
value so that if it is evaluated a second time the already-computed
value can be returned immediately. But in this case we can see
that f never evaluates its second argument more than once, so
the memoisation step is entirely wasted. We call these single-entry

thunks.
Memoisation is not expensive, but it is certainly not free. Opera-
tionally, a pointer to the thunk must be pushed on the stack when
evaluation starts, it must be black-holed to avoid space leaks (Jones
1992), and the update involves a memory write. If cardinality anal-
ysis can identify single-entry thunks, as well as one-shot lambdas,
that would be a Good Thing. And so it can: we give f the usage
signature:

f :: !⇤U ! 1⇤U ! •
The “!⇤” modifier says that f may evaluate its first argument more
than once, while the “1⇤” says that it evaluates its second argument
at most once.

2.5 Call vs evaluation
For functions, there is a difference between being evaluated once
and called once, because of Haskell’s seq function. For example:

f1 g = g ‘seq‘ 1 -- f1 :: 1⇤U ! •
f2 g = g ‘seq‘ g 2 -- f2 :: !⇤C 1(U) ! •
f3 g = g 3 -- f3 :: 1⇤C 1(U) ! •

The function seq evaluates its first argument (to head-normal form)
and returns its second argument. If its first argument is a function,
the function is evaluated to a lambda, but not called. Notice that
f2’s usage type says that g is evaluated more than once, but applied
only once. For example consider the call

f (\x. x + y)

How many times is y evaluated? For f equal to f1 the answer is
zero; for f2 and f3 it is one.

3. Formalising Cardinality Analysis
We now present our analysis in detail. The syntax of the language
we analyse is given in Figure 1. It is quite conventional: just lambda
calculus with pairs and (non-recursive) let-expressions. Constants
 include literals and primitive functions over literals, as well as
Haskell’s built-in seq. We use A-normal form (Sabry and Felleisen
1992) so that the issues concerning thunks show up only for let
and not also for function arguments.

3.1 Usage demands
Our cardinality analysis is a backwards analysis over an abstract
domain of usage demands. As with any such analysis, the abstract
domain embodies a balance between the cost of the analysis and
its precision. Our particular choices are expressed in the syntax of
usage demands, given in Figure 1. A usage demand d is one of the
following:
• U (d†

1 , d
†
2) applies to pairs. The pair itself is evaluated and its

first component is used as described by d
†
1 and its second by d

†
2 .

Expressions and values
e ::= x | v | e x | let x = e1 in e2

| case e1 of (x1, x2) ! e2

v ::= | �x.e | (x1, x2)
Annotated expressions and values

e ::= x | v | e x | let x
m
= e1 in e2

| case e1 of (x1, x2) ! e2

v ::= | �m
x.e | (x1, x2)

Usage demands and multi-demands
d ::= C

n(d) | U (d†
1 , d

†
2) | U | HU

d
† ::= A | n⇤d
n ::= 1 | !
m ::= 0 | 1 | !

Non-syntactic demand equalities
C

!(U) ⌘ U

U (!⇤U ,!⇤U) ⌘ U

U (A,A) ⌘ HU

Usage types
⌧ ::= • | d† ! ⌧

Usage type expansion
d
† ! ⌧ � d

† ! ⌧
• � !⇤U ! •

Free-variable usage environments (fv-usage)
' ::= (x :d†),' | ✏

Auxiliary notation on environments
'(x) = d

† when (x :d†) 2 '
A otherwise

Usage signatures and signature environments
⇢ ::= hk ; ⌧ ; 'i k 2 Z>0

P ::= (x :⇢),P | ✏

transform(hk ; ⌧ ; 'i, d)
= h⌧ ; 'i if d v C

1(. . . k -fold . . .C 1(U))
= h!⇤⌧ ; !⇤'i otherwise

Figure 1: Syntax of terms, values, usage types, and environments

• C
n(d) applies to functions. The function is called at most n

times, and on each call the result is used as described by d .
Call demands are, to the best of our knowledge, new.

• U , or “used”, indicating no information; the demand can use
the value in an arbitrary way.

• HU , or “head-used”, is a special case; it is the demand that seq
places on its first argument: seq ::HU ! U ! •.

A usage demand d always uses the root of the value exactly once;
it cannot express absence or multiple evaluation. That is done by
d
†, which is either A (absent), or n ⇤d indicating that the value is

used at most n times in a way described by d . In both C
n(d) and

n⇤d , the multiplicity n is either 1 or ! (meaning “many”). Notice
that a call demand C

n(d) has a d inside it, not a d
†: if a function

is called, its body is evaluated exactly once. This is different from
pairs. For example, if we have

let x = (e1, e2) in fst x + fst x

then e1 is evaluated twice.

Both U and HU come with some non-syntactic equalities, denoted
by ⌘ in Figure 1 and necessary for the proof of well-typedness
(Section 4). For example, U is equivalent to a pair demand whose
components are used many times, or a many-call-demand where
the result is used in an arbitrary way. Similarly, for pairs HU is
equivalent to U (A,A), while for functions HU is equivalent to
C

0(A), if we had such a thing. In the rest of the paper all definitions

3

2.4 Thunk cardinality
Consider these definitions

f :: Int -> Int -> Int
f x c = if x > 0 then c + 1 else

if x == 0 then 0 else c - 1

g y = f y (costly y)

Since f is not strict in c, g must build a thunk for (costly y) to
pass to f. In call-by-need evaluation, thunks are memoised. That
is, when a thunk is evaluated at run-time, it is overwritten with the
value so that if it is evaluated a second time the already-computed
value can be returned immediately. But in this case we can see
that f never evaluates its second argument more than once, so
the memoisation step is entirely wasted. We call these single-entry

thunks.
Memoisation is not expensive, but it is certainly not free. Opera-
tionally, a pointer to the thunk must be pushed on the stack when
evaluation starts, it must be black-holed to avoid space leaks (Jones
1992), and the update involves a memory write. If cardinality anal-
ysis can identify single-entry thunks, as well as one-shot lambdas,
that would be a Good Thing. And so it can: we give f the usage
signature:

f :: !⇤U ! 1⇤U ! •
The “!⇤” modifier says that f may evaluate its first argument more
than once, while the “1⇤” says that it evaluates its second argument
at most once.

2.5 Call vs evaluation
For functions, there is a difference between being evaluated once
and called once, because of Haskell’s seq function. For example:

f1 g = g ‘seq‘ 1 -- f1 :: 1⇤U ! •
f2 g = g ‘seq‘ g 2 -- f2 :: !⇤C 1(U) ! •
f3 g = g 3 -- f3 :: 1⇤C 1(U) ! •

The function seq evaluates its first argument (to head-normal form)
and returns its second argument. If its first argument is a function,
the function is evaluated to a lambda, but not called. Notice that
f2’s usage type says that g is evaluated more than once, but applied
only once. For example consider the call

f (\x. x + y)

How many times is y evaluated? For f equal to f1 the answer is
zero; for f2 and f3 it is one.

3. Formalising Cardinality Analysis
We now present our analysis in detail. The syntax of the language
we analyse is given in Figure 1. It is quite conventional: just lambda
calculus with pairs and (non-recursive) let-expressions. Constants
 include literals and primitive functions over literals, as well as
Haskell’s built-in seq. We use A-normal form (Sabry and Felleisen
1992) so that the issues concerning thunks show up only for let
and not also for function arguments.

3.1 Usage demands
Our cardinality analysis is a backwards analysis over an abstract
domain of usage demands. As with any such analysis, the abstract
domain embodies a balance between the cost of the analysis and
its precision. Our particular choices are expressed in the syntax of
usage demands, given in Figure 1. A usage demand d is one of the
following:
• U (d†

1 , d
†
2) applies to pairs. The pair itself is evaluated and its

first component is used as described by d
†
1 and its second by d

†
2 .

Expressions and values
e ::= x | v | e x | let x = e1 in e2

| case e1 of (x1, x2) ! e2

v ::= | �x.e | (x1, x2)
Annotated expressions and values

e ::= x | v | e x | let x
m
= e1 in e2

| case e1 of (x1, x2) ! e2

v ::= | �m
x.e | (x1, x2)

Usage demands and multi-demands
d ::= C

n(d) | U (d†
1 , d

†
2) | U | HU

d
† ::= A | n⇤d
n ::= 1 | !
m ::= 0 | 1 | !

Non-syntactic demand equalities
C

!(U) ⌘ U

U (!⇤U ,!⇤U) ⌘ U

U (A,A) ⌘ HU

Usage types
⌧ ::= • | d† ! ⌧

Usage type expansion
d
† ! ⌧ � d

† ! ⌧
• � !⇤U ! •

Free-variable usage environments (fv-usage)
' ::= (x :d†),' | ✏

Auxiliary notation on environments
'(x) = d

† when (x :d†) 2 '
A otherwise

Usage signatures and signature environments
⇢ ::= hk ; ⌧ ; 'i k 2 Z>0

P ::= (x :⇢),P | ✏

transform(hk ; ⌧ ; 'i, d)
= h⌧ ; 'i if d v C

1(. . . k -fold . . .C 1(U))
= h!⇤⌧ ; !⇤'i otherwise

Figure 1: Syntax of terms, values, usage types, and environments

• C
n(d) applies to functions. The function is called at most n

times, and on each call the result is used as described by d .
Call demands are, to the best of our knowledge, new.

• U , or “used”, indicating no information; the demand can use
the value in an arbitrary way.

• HU , or “head-used”, is a special case; it is the demand that seq
places on its first argument: seq ::HU ! U ! •.

A usage demand d always uses the root of the value exactly once;
it cannot express absence or multiple evaluation. That is done by
d
†, which is either A (absent), or n ⇤d indicating that the value is

used at most n times in a way described by d . In both C
n(d) and

n⇤d , the multiplicity n is either 1 or ! (meaning “many”). Notice
that a call demand C

n(d) has a d inside it, not a d
†: if a function

is called, its body is evaluated exactly once. This is different from
pairs. For example, if we have

let x = (e1, e2) in fst x + fst x

then e1 is evaluated twice.

Both U and HU come with some non-syntactic equalities, denoted
by ⌘ in Figure 1 and necessary for the proof of well-typedness
(Section 4). For example, U is equivalent to a pair demand whose
components are used many times, or a many-call-demand where
the result is used in an arbitrary way. Similarly, for pairs HU is
equivalent to U (A,A), while for functions HU is equivalent to
C

0(A), if we had such a thing. In the rest of the paper all definitions

3

Usage cardinalities

call demand
Usage demands

2.4 Thunk cardinality
Consider these definitions

f :: Int -> Int -> Int
f x c = if x > 0 then c + 1 else

if x == 0 then 0 else c - 1

g y = f y (costly y)

Since f is not strict in c, g must build a thunk for (costly y) to
pass to f. In call-by-need evaluation, thunks are memoised. That
is, when a thunk is evaluated at run-time, it is overwritten with the
value so that if it is evaluated a second time the already-computed
value can be returned immediately. But in this case we can see
that f never evaluates its second argument more than once, so
the memoisation step is entirely wasted. We call these single-entry

thunks.
Memoisation is not expensive, but it is certainly not free. Opera-
tionally, a pointer to the thunk must be pushed on the stack when
evaluation starts, it must be black-holed to avoid space leaks (Jones
1992), and the update involves a memory write. If cardinality anal-
ysis can identify single-entry thunks, as well as one-shot lambdas,
that would be a Good Thing. And so it can: we give f the usage
signature:

f :: !⇤U ! 1⇤U ! •
The “!⇤” modifier says that f may evaluate its first argument more
than once, while the “1⇤” says that it evaluates its second argument
at most once.

2.5 Call vs evaluation
For functions, there is a difference between being evaluated once
and called once, because of Haskell’s seq function. For example:

f1 g = g ‘seq‘ 1 -- f1 :: 1⇤U ! •
f2 g = g ‘seq‘ g 2 -- f2 :: !⇤C 1(U) ! •
f3 g = g 3 -- f3 :: 1⇤C 1(U) ! •

The function seq evaluates its first argument (to head-normal form)
and returns its second argument. If its first argument is a function,
the function is evaluated to a lambda, but not called. Notice that
f2’s usage type says that g is evaluated more than once, but applied
only once. For example consider the call

f (\x. x + y)

How many times is y evaluated? For f equal to f1 the answer is
zero; for f2 and f3 it is one.

3. Formalising Cardinality Analysis
We now present our analysis in detail. The syntax of the language
we analyse is given in Figure 1. It is quite conventional: just lambda
calculus with pairs and (non-recursive) let-expressions. Constants
 include literals and primitive functions over literals, as well as
Haskell’s built-in seq. We use A-normal form (Sabry and Felleisen
1992) so that the issues concerning thunks show up only for let
and not also for function arguments.

3.1 Usage demands
Our cardinality analysis is a backwards analysis over an abstract
domain of usage demands. As with any such analysis, the abstract
domain embodies a balance between the cost of the analysis and
its precision. Our particular choices are expressed in the syntax of
usage demands, given in Figure 1. A usage demand d is one of the
following:
• U (d†

1 , d
†
2) applies to pairs. The pair itself is evaluated and its

first component is used as described by d
†
1 and its second by d

†
2 .

Expressions and values
e ::= x | v | e x | let x = e1 in e2

| case e1 of (x1, x2) ! e2

v ::= | �x.e | (x1, x2)
Annotated expressions and values

e ::= x | v | e x | let x
m
= e1 in e2

| case e1 of (x1, x2) ! e2

v ::= | �m
x.e | (x1, x2)

Usage demands and multi-demands
d ::= C

n(d) | U (d†
1 , d

†
2) | U | HU

d
† ::= A | n⇤d
n ::= 1 | !
m ::= 0 | 1 | !

Non-syntactic demand equalities
C

!(U) ⌘ U

U (!⇤U ,!⇤U) ⌘ U

U (A,A) ⌘ HU

Usage types
⌧ ::= • | d† ! ⌧

Usage type expansion
d
† ! ⌧ � d

† ! ⌧
• � !⇤U ! •

Free-variable usage environments (fv-usage)
' ::= (x :d†),' | ✏

Auxiliary notation on environments
'(x) = d

† when (x :d†) 2 '
A otherwise

Usage signatures and signature environments
⇢ ::= hk ; ⌧ ; 'i k 2 Z>0

P ::= (x :⇢),P | ✏

transform(hk ; ⌧ ; 'i, d)
= h⌧ ; 'i if d v C

1(. . . k -fold . . .C 1(U))
= h!⇤⌧ ; !⇤'i otherwise

Figure 1: Syntax of terms, values, usage types, and environments

• C
n(d) applies to functions. The function is called at most n

times, and on each call the result is used as described by d .
Call demands are, to the best of our knowledge, new.

• U , or “used”, indicating no information; the demand can use
the value in an arbitrary way.

• HU , or “head-used”, is a special case; it is the demand that seq
places on its first argument: seq ::HU ! U ! •.

A usage demand d always uses the root of the value exactly once;
it cannot express absence or multiple evaluation. That is done by
d
†, which is either A (absent), or n ⇤d indicating that the value is

used at most n times in a way described by d . In both C
n(d) and

n⇤d , the multiplicity n is either 1 or ! (meaning “many”). Notice
that a call demand C

n(d) has a d inside it, not a d
†: if a function

is called, its body is evaluated exactly once. This is different from
pairs. For example, if we have

let x = (e1, e2) in fst x + fst x

then e1 is evaluated twice.

Both U and HU come with some non-syntactic equalities, denoted
by ⌘ in Figure 1 and necessary for the proof of well-typedness
(Section 4). For example, U is equivalent to a pair demand whose
components are used many times, or a many-call-demand where
the result is used in an arbitrary way. Similarly, for pairs HU is
equivalent to U (A,A), while for functions HU is equivalent to
C

0(A), if we had such a thing. In the rest of the paper all definitions

3

2.4 Thunk cardinality
Consider these definitions

f :: Int -> Int -> Int
f x c = if x > 0 then c + 1 else

if x == 0 then 0 else c - 1

g y = f y (costly y)

Since f is not strict in c, g must build a thunk for (costly y) to
pass to f. In call-by-need evaluation, thunks are memoised. That
is, when a thunk is evaluated at run-time, it is overwritten with the
value so that if it is evaluated a second time the already-computed
value can be returned immediately. But in this case we can see
that f never evaluates its second argument more than once, so
the memoisation step is entirely wasted. We call these single-entry

thunks.
Memoisation is not expensive, but it is certainly not free. Opera-
tionally, a pointer to the thunk must be pushed on the stack when
evaluation starts, it must be black-holed to avoid space leaks (Jones
1992), and the update involves a memory write. If cardinality anal-
ysis can identify single-entry thunks, as well as one-shot lambdas,
that would be a Good Thing. And so it can: we give f the usage
signature:

f :: !⇤U ! 1⇤U ! •
The “!⇤” modifier says that f may evaluate its first argument more
than once, while the “1⇤” says that it evaluates its second argument
at most once.

2.5 Call vs evaluation
For functions, there is a difference between being evaluated once
and called once, because of Haskell’s seq function. For example:

f1 g = g ‘seq‘ 1 -- f1 :: 1⇤U ! •
f2 g = g ‘seq‘ g 2 -- f2 :: !⇤C 1(U) ! •
f3 g = g 3 -- f3 :: 1⇤C 1(U) ! •

The function seq evaluates its first argument (to head-normal form)
and returns its second argument. If its first argument is a function,
the function is evaluated to a lambda, but not called. Notice that
f2’s usage type says that g is evaluated more than once, but applied
only once. For example consider the call

f (\x. x + y)

How many times is y evaluated? For f equal to f1 the answer is
zero; for f2 and f3 it is one.

3. Formalising Cardinality Analysis
We now present our analysis in detail. The syntax of the language
we analyse is given in Figure 1. It is quite conventional: just lambda
calculus with pairs and (non-recursive) let-expressions. Constants
 include literals and primitive functions over literals, as well as
Haskell’s built-in seq. We use A-normal form (Sabry and Felleisen
1992) so that the issues concerning thunks show up only for let
and not also for function arguments.

3.1 Usage demands
Our cardinality analysis is a backwards analysis over an abstract
domain of usage demands. As with any such analysis, the abstract
domain embodies a balance between the cost of the analysis and
its precision. Our particular choices are expressed in the syntax of
usage demands, given in Figure 1. A usage demand d is one of the
following:
• U (d†

1 , d
†
2) applies to pairs. The pair itself is evaluated and its

first component is used as described by d
†
1 and its second by d

†
2 .

Expressions and values
e ::= x | v | e x | let x = e1 in e2

| case e1 of (x1, x2) ! e2

v ::= | �x.e | (x1, x2)
Annotated expressions and values

e ::= x | v | e x | let x
m
= e1 in e2

| case e1 of (x1, x2) ! e2

v ::= | �m
x.e | (x1, x2)

Usage demands and multi-demands
d ::= C

n(d) | U (d†
1 , d

†
2) | U | HU

d
† ::= A | n⇤d
n ::= 1 | !
m ::= 0 | 1 | !

Non-syntactic demand equalities
C

!(U) ⌘ U

U (!⇤U ,!⇤U) ⌘ U

U (A,A) ⌘ HU

Usage types
⌧ ::= • | d† ! ⌧

Usage type expansion
d
† ! ⌧ � d

† ! ⌧
• � !⇤U ! •

Free-variable usage environments (fv-usage)
' ::= (x :d†),' | ✏

Auxiliary notation on environments
'(x) = d

† when (x :d†) 2 '
A otherwise

Usage signatures and signature environments
⇢ ::= hk ; ⌧ ; 'i k 2 Z>0

P ::= (x :⇢),P | ✏

transform(hk ; ⌧ ; 'i, d)
= h⌧ ; 'i if d v C

1(. . . k -fold . . .C 1(U))
= h!⇤⌧ ; !⇤'i otherwise

Figure 1: Syntax of terms, values, usage types, and environments

• C
n(d) applies to functions. The function is called at most n

times, and on each call the result is used as described by d .
Call demands are, to the best of our knowledge, new.

• U , or “used”, indicating no information; the demand can use
the value in an arbitrary way.

• HU , or “head-used”, is a special case; it is the demand that seq
places on its first argument: seq ::HU ! U ! •.

A usage demand d always uses the root of the value exactly once;
it cannot express absence or multiple evaluation. That is done by
d
†, which is either A (absent), or n ⇤d indicating that the value is

used at most n times in a way described by d . In both C
n(d) and

n⇤d , the multiplicity n is either 1 or ! (meaning “many”). Notice
that a call demand C

n(d) has a d inside it, not a d
†: if a function

is called, its body is evaluated exactly once. This is different from
pairs. For example, if we have

let x = (e1, e2) in fst x + fst x

then e1 is evaluated twice.

Both U and HU come with some non-syntactic equalities, denoted
by ⌘ in Figure 1 and necessary for the proof of well-typedness
(Section 4). For example, U is equivalent to a pair demand whose
components are used many times, or a many-call-demand where
the result is used in an arbitrary way. Similarly, for pairs HU is
equivalent to U (A,A), while for functions HU is equivalent to
C

0(A), if we had such a thing. In the rest of the paper all definitions

3

2.4 Thunk cardinality
Consider these definitions

f :: Int -> Int -> Int
f x c = if x > 0 then c + 1 else

if x == 0 then 0 else c - 1

g y = f y (costly y)

Since f is not strict in c, g must build a thunk for (costly y) to
pass to f. In call-by-need evaluation, thunks are memoised. That
is, when a thunk is evaluated at run-time, it is overwritten with the
value so that if it is evaluated a second time the already-computed
value can be returned immediately. But in this case we can see
that f never evaluates its second argument more than once, so
the memoisation step is entirely wasted. We call these single-entry

thunks.
Memoisation is not expensive, but it is certainly not free. Opera-
tionally, a pointer to the thunk must be pushed on the stack when
evaluation starts, it must be black-holed to avoid space leaks (Jones
1992), and the update involves a memory write. If cardinality anal-
ysis can identify single-entry thunks, as well as one-shot lambdas,
that would be a Good Thing. And so it can: we give f the usage
signature:

f :: !⇤U ! 1⇤U ! •
The “!⇤” modifier says that f may evaluate its first argument more
than once, while the “1⇤” says that it evaluates its second argument
at most once.

2.5 Call vs evaluation
For functions, there is a difference between being evaluated once
and called once, because of Haskell’s seq function. For example:

f1 g = g ‘seq‘ 1 -- f1 :: 1⇤U ! •
f2 g = g ‘seq‘ g 2 -- f2 :: !⇤C 1(U) ! •
f3 g = g 3 -- f3 :: 1⇤C 1(U) ! •

The function seq evaluates its first argument (to head-normal form)
and returns its second argument. If its first argument is a function,
the function is evaluated to a lambda, but not called. Notice that
f2’s usage type says that g is evaluated more than once, but applied
only once. For example consider the call

f (\x. x + y)

How many times is y evaluated? For f equal to f1 the answer is
zero; for f2 and f3 it is one.

3. Formalising Cardinality Analysis
We now present our analysis in detail. The syntax of the language
we analyse is given in Figure 1. It is quite conventional: just lambda
calculus with pairs and (non-recursive) let-expressions. Constants
 include literals and primitive functions over literals, as well as
Haskell’s built-in seq. We use A-normal form (Sabry and Felleisen
1992) so that the issues concerning thunks show up only for let
and not also for function arguments.

3.1 Usage demands
Our cardinality analysis is a backwards analysis over an abstract
domain of usage demands. As with any such analysis, the abstract
domain embodies a balance between the cost of the analysis and
its precision. Our particular choices are expressed in the syntax of
usage demands, given in Figure 1. A usage demand d is one of the
following:
• U (d†

1 , d
†
2) applies to pairs. The pair itself is evaluated and its

first component is used as described by d
†
1 and its second by d

†
2 .

Expressions and values
e ::= x | v | e x | let x = e1 in e2

| case e1 of (x1, x2) ! e2

v ::= | �x.e | (x1, x2)
Annotated expressions and values

e ::= x | v | e x | let x
m
= e1 in e2

| case e1 of (x1, x2) ! e2

v ::= | �m
x.e | (x1, x2)

Usage demands and multi-demands
d ::= C

n(d) | U (d†
1 , d

†
2) | U | HU

d
† ::= A | n⇤d
n ::= 1 | !
m ::= 0 | 1 | !

Non-syntactic demand equalities
C

!(U) ⌘ U

U (!⇤U ,!⇤U) ⌘ U

U (A,A) ⌘ HU

Usage types
⌧ ::= • | d† ! ⌧

Usage type expansion
d
† ! ⌧ � d

† ! ⌧
• � !⇤U ! •

Free-variable usage environments (fv-usage)
' ::= (x :d†),' | ✏

Auxiliary notation on environments
'(x) = d

† when (x :d†) 2 '
A otherwise

Usage signatures and signature environments
⇢ ::= hk ; ⌧ ; 'i k 2 Z>0

P ::= (x :⇢),P | ✏

transform(hk ; ⌧ ; 'i, d)
= h⌧ ; 'i if d v C

1(. . . k -fold . . .C 1(U))
= h!⇤⌧ ; !⇤'i otherwise

Figure 1: Syntax of terms, values, usage types, and environments

• C
n(d) applies to functions. The function is called at most n

times, and on each call the result is used as described by d .
Call demands are, to the best of our knowledge, new.

• U , or “used”, indicating no information; the demand can use
the value in an arbitrary way.

• HU , or “head-used”, is a special case; it is the demand that seq
places on its first argument: seq ::HU ! U ! •.

A usage demand d always uses the root of the value exactly once;
it cannot express absence or multiple evaluation. That is done by
d
†, which is either A (absent), or n ⇤d indicating that the value is

used at most n times in a way described by d . In both C
n(d) and

n⇤d , the multiplicity n is either 1 or ! (meaning “many”). Notice
that a call demand C

n(d) has a d inside it, not a d
†: if a function

is called, its body is evaluated exactly once. This is different from
pairs. For example, if we have

let x = (e1, e2) in fst x + fst x

then e1 is evaluated twice.

Both U and HU come with some non-syntactic equalities, denoted
by ⌘ in Figure 1 and necessary for the proof of well-typedness
(Section 4). For example, U is equivalent to a pair demand whose
components are used many times, or a many-call-demand where
the result is used in an arbitrary way. Similarly, for pairs HU is
equivalent to U (A,A), while for functions HU is equivalent to
C

0(A), if we had such a thing. In the rest of the paper all definitions

3

tuple demand

Cardinality demands

Usage cardinalities

Usage demands

2.4 Thunk cardinality
Consider these definitions

f :: Int -> Int -> Int
f x c = if x > 0 then c + 1 else

if x == 0 then 0 else c - 1

g y = f y (costly y)

Since f is not strict in c, g must build a thunk for (costly y) to
pass to f. In call-by-need evaluation, thunks are memoised. That
is, when a thunk is evaluated at run-time, it is overwritten with the
value so that if it is evaluated a second time the already-computed
value can be returned immediately. But in this case we can see
that f never evaluates its second argument more than once, so
the memoisation step is entirely wasted. We call these single-entry

thunks.
Memoisation is not expensive, but it is certainly not free. Opera-
tionally, a pointer to the thunk must be pushed on the stack when
evaluation starts, it must be black-holed to avoid space leaks (Jones
1992), and the update involves a memory write. If cardinality anal-
ysis can identify single-entry thunks, as well as one-shot lambdas,
that would be a Good Thing. And so it can: we give f the usage
signature:

f :: !⇤U ! 1⇤U ! •
The “!⇤” modifier says that f may evaluate its first argument more
than once, while the “1⇤” says that it evaluates its second argument
at most once.

2.5 Call vs evaluation
For functions, there is a difference between being evaluated once
and called once, because of Haskell’s seq function. For example:

f1 g = g ‘seq‘ 1 -- f1 :: 1⇤U ! •
f2 g = g ‘seq‘ g 2 -- f2 :: !⇤C 1(U) ! •
f3 g = g 3 -- f3 :: 1⇤C 1(U) ! •

The function seq evaluates its first argument (to head-normal form)
and returns its second argument. If its first argument is a function,
the function is evaluated to a lambda, but not called. Notice that
f2’s usage type says that g is evaluated more than once, but applied
only once. For example consider the call

f (\x. x + y)

How many times is y evaluated? For f equal to f1 the answer is
zero; for f2 and f3 it is one.

3. Formalising Cardinality Analysis
We now present our analysis in detail. The syntax of the language
we analyse is given in Figure 1. It is quite conventional: just lambda
calculus with pairs and (non-recursive) let-expressions. Constants
 include literals and primitive functions over literals, as well as
Haskell’s built-in seq. We use A-normal form (Sabry and Felleisen
1992) so that the issues concerning thunks show up only for let
and not also for function arguments.

3.1 Usage demands
Our cardinality analysis is a backwards analysis over an abstract
domain of usage demands. As with any such analysis, the abstract
domain embodies a balance between the cost of the analysis and
its precision. Our particular choices are expressed in the syntax of
usage demands, given in Figure 1. A usage demand d is one of the
following:
• U (d†

1 , d
†
2) applies to pairs. The pair itself is evaluated and its

first component is used as described by d
†
1 and its second by d

†
2 .

Expressions and values
e ::= x | v | e x | let x = e1 in e2

| case e1 of (x1, x2) ! e2

v ::= | �x.e | (x1, x2)
Annotated expressions and values

e ::= x | v | e x | let x
m
= e1 in e2

| case e1 of (x1, x2) ! e2

v ::= | �m
x.e | (x1, x2)

Usage demands and multi-demands
d ::= C

n(d) | U (d†
1 , d

†
2) | U | HU

d
† ::= A | n⇤d
n ::= 1 | !
m ::= 0 | 1 | !

Non-syntactic demand equalities
C

!(U) ⌘ U

U (!⇤U ,!⇤U) ⌘ U

U (A,A) ⌘ HU

Usage types
⌧ ::= • | d† ! ⌧

Usage type expansion
d
† ! ⌧ � d

† ! ⌧
• � !⇤U ! •

Free-variable usage environments (fv-usage)
' ::= (x :d†),' | ✏

Auxiliary notation on environments
'(x) = d

† when (x :d†) 2 '
A otherwise

Usage signatures and signature environments
⇢ ::= hk ; ⌧ ; 'i k 2 Z>0

P ::= (x :⇢),P | ✏

transform(hk ; ⌧ ; 'i, d)
= h⌧ ; 'i if d v C

1(. . . k -fold . . .C 1(U))
= h!⇤⌧ ; !⇤'i otherwise

Figure 1: Syntax of terms, values, usage types, and environments

• C
n(d) applies to functions. The function is called at most n

times, and on each call the result is used as described by d .
Call demands are, to the best of our knowledge, new.

• U , or “used”, indicating no information; the demand can use
the value in an arbitrary way.

• HU , or “head-used”, is a special case; it is the demand that seq
places on its first argument: seq ::HU ! U ! •.

A usage demand d always uses the root of the value exactly once;
it cannot express absence or multiple evaluation. That is done by
d
†, which is either A (absent), or n ⇤d indicating that the value is

used at most n times in a way described by d . In both C
n(d) and

n⇤d , the multiplicity n is either 1 or ! (meaning “many”). Notice
that a call demand C

n(d) has a d inside it, not a d
†: if a function

is called, its body is evaluated exactly once. This is different from
pairs. For example, if we have

let x = (e1, e2) in fst x + fst x

then e1 is evaluated twice.

Both U and HU come with some non-syntactic equalities, denoted
by ⌘ in Figure 1 and necessary for the proof of well-typedness
(Section 4). For example, U is equivalent to a pair demand whose
components are used many times, or a many-call-demand where
the result is used in an arbitrary way. Similarly, for pairs HU is
equivalent to U (A,A), while for functions HU is equivalent to
C

0(A), if we had such a thing. In the rest of the paper all definitions

3

2.4 Thunk cardinality
Consider these definitions

f :: Int -> Int -> Int
f x c = if x > 0 then c + 1 else

if x == 0 then 0 else c - 1

g y = f y (costly y)

Since f is not strict in c, g must build a thunk for (costly y) to
pass to f. In call-by-need evaluation, thunks are memoised. That
is, when a thunk is evaluated at run-time, it is overwritten with the
value so that if it is evaluated a second time the already-computed
value can be returned immediately. But in this case we can see
that f never evaluates its second argument more than once, so
the memoisation step is entirely wasted. We call these single-entry

thunks.
Memoisation is not expensive, but it is certainly not free. Opera-
tionally, a pointer to the thunk must be pushed on the stack when
evaluation starts, it must be black-holed to avoid space leaks (Jones
1992), and the update involves a memory write. If cardinality anal-
ysis can identify single-entry thunks, as well as one-shot lambdas,
that would be a Good Thing. And so it can: we give f the usage
signature:

f :: !⇤U ! 1⇤U ! •
The “!⇤” modifier says that f may evaluate its first argument more
than once, while the “1⇤” says that it evaluates its second argument
at most once.

2.5 Call vs evaluation
For functions, there is a difference between being evaluated once
and called once, because of Haskell’s seq function. For example:

f1 g = g ‘seq‘ 1 -- f1 :: 1⇤U ! •
f2 g = g ‘seq‘ g 2 -- f2 :: !⇤C 1(U) ! •
f3 g = g 3 -- f3 :: 1⇤C 1(U) ! •

The function seq evaluates its first argument (to head-normal form)
and returns its second argument. If its first argument is a function,
the function is evaluated to a lambda, but not called. Notice that
f2’s usage type says that g is evaluated more than once, but applied
only once. For example consider the call

f (\x. x + y)

How many times is y evaluated? For f equal to f1 the answer is
zero; for f2 and f3 it is one.

3. Formalising Cardinality Analysis
We now present our analysis in detail. The syntax of the language
we analyse is given in Figure 1. It is quite conventional: just lambda
calculus with pairs and (non-recursive) let-expressions. Constants
 include literals and primitive functions over literals, as well as
Haskell’s built-in seq. We use A-normal form (Sabry and Felleisen
1992) so that the issues concerning thunks show up only for let
and not also for function arguments.

3.1 Usage demands
Our cardinality analysis is a backwards analysis over an abstract
domain of usage demands. As with any such analysis, the abstract
domain embodies a balance between the cost of the analysis and
its precision. Our particular choices are expressed in the syntax of
usage demands, given in Figure 1. A usage demand d is one of the
following:
• U (d†

1 , d
†
2) applies to pairs. The pair itself is evaluated and its

first component is used as described by d
†
1 and its second by d

†
2 .

Expressions and values
e ::= x | v | e x | let x = e1 in e2

| case e1 of (x1, x2) ! e2

v ::= | �x.e | (x1, x2)
Annotated expressions and values

e ::= x | v | e x | let x
m
= e1 in e2

| case e1 of (x1, x2) ! e2

v ::= | �m
x.e | (x1, x2)

Usage demands and multi-demands
d ::= C

n(d) | U (d†
1 , d

†
2) | U | HU

d
† ::= A | n⇤d
n ::= 1 | !
m ::= 0 | 1 | !

Non-syntactic demand equalities
C

!(U) ⌘ U

U (!⇤U ,!⇤U) ⌘ U

U (A,A) ⌘ HU

Usage types
⌧ ::= • | d† ! ⌧

Usage type expansion
d
† ! ⌧ � d

† ! ⌧
• � !⇤U ! •

Free-variable usage environments (fv-usage)
' ::= (x :d†),' | ✏

Auxiliary notation on environments
'(x) = d

† when (x :d†) 2 '
A otherwise

Usage signatures and signature environments
⇢ ::= hk ; ⌧ ; 'i k 2 Z>0

P ::= (x :⇢),P | ✏

transform(hk ; ⌧ ; 'i, d)
= h⌧ ; 'i if d v C

1(. . . k -fold . . .C 1(U))
= h!⇤⌧ ; !⇤'i otherwise

Figure 1: Syntax of terms, values, usage types, and environments

• C
n(d) applies to functions. The function is called at most n

times, and on each call the result is used as described by d .
Call demands are, to the best of our knowledge, new.

• U , or “used”, indicating no information; the demand can use
the value in an arbitrary way.

• HU , or “head-used”, is a special case; it is the demand that seq
places on its first argument: seq ::HU ! U ! •.

A usage demand d always uses the root of the value exactly once;
it cannot express absence or multiple evaluation. That is done by
d
†, which is either A (absent), or n ⇤d indicating that the value is

used at most n times in a way described by d . In both C
n(d) and

n⇤d , the multiplicity n is either 1 or ! (meaning “many”). Notice
that a call demand C

n(d) has a d inside it, not a d
†: if a function

is called, its body is evaluated exactly once. This is different from
pairs. For example, if we have

let x = (e1, e2) in fst x + fst x

then e1 is evaluated twice.

Both U and HU come with some non-syntactic equalities, denoted
by ⌘ in Figure 1 and necessary for the proof of well-typedness
(Section 4). For example, U is equivalent to a pair demand whose
components are used many times, or a many-call-demand where
the result is used in an arbitrary way. Similarly, for pairs HU is
equivalent to U (A,A), while for functions HU is equivalent to
C

0(A), if we had such a thing. In the rest of the paper all definitions

3

2.4 Thunk cardinality
Consider these definitions

f :: Int -> Int -> Int
f x c = if x > 0 then c + 1 else

if x == 0 then 0 else c - 1

g y = f y (costly y)

Since f is not strict in c, g must build a thunk for (costly y) to
pass to f. In call-by-need evaluation, thunks are memoised. That
is, when a thunk is evaluated at run-time, it is overwritten with the
value so that if it is evaluated a second time the already-computed
value can be returned immediately. But in this case we can see
that f never evaluates its second argument more than once, so
the memoisation step is entirely wasted. We call these single-entry

thunks.
Memoisation is not expensive, but it is certainly not free. Opera-
tionally, a pointer to the thunk must be pushed on the stack when
evaluation starts, it must be black-holed to avoid space leaks (Jones
1992), and the update involves a memory write. If cardinality anal-
ysis can identify single-entry thunks, as well as one-shot lambdas,
that would be a Good Thing. And so it can: we give f the usage
signature:

f :: !⇤U ! 1⇤U ! •
The “!⇤” modifier says that f may evaluate its first argument more
than once, while the “1⇤” says that it evaluates its second argument
at most once.

2.5 Call vs evaluation
For functions, there is a difference between being evaluated once
and called once, because of Haskell’s seq function. For example:

f1 g = g ‘seq‘ 1 -- f1 :: 1⇤U ! •
f2 g = g ‘seq‘ g 2 -- f2 :: !⇤C 1(U) ! •
f3 g = g 3 -- f3 :: 1⇤C 1(U) ! •

The function seq evaluates its first argument (to head-normal form)
and returns its second argument. If its first argument is a function,
the function is evaluated to a lambda, but not called. Notice that
f2’s usage type says that g is evaluated more than once, but applied
only once. For example consider the call

f (\x. x + y)

How many times is y evaluated? For f equal to f1 the answer is
zero; for f2 and f3 it is one.

3. Formalising Cardinality Analysis
We now present our analysis in detail. The syntax of the language
we analyse is given in Figure 1. It is quite conventional: just lambda
calculus with pairs and (non-recursive) let-expressions. Constants
 include literals and primitive functions over literals, as well as
Haskell’s built-in seq. We use A-normal form (Sabry and Felleisen
1992) so that the issues concerning thunks show up only for let
and not also for function arguments.

3.1 Usage demands
Our cardinality analysis is a backwards analysis over an abstract
domain of usage demands. As with any such analysis, the abstract
domain embodies a balance between the cost of the analysis and
its precision. Our particular choices are expressed in the syntax of
usage demands, given in Figure 1. A usage demand d is one of the
following:
• U (d†

1 , d
†
2) applies to pairs. The pair itself is evaluated and its

first component is used as described by d
†
1 and its second by d

†
2 .

Expressions and values
e ::= x | v | e x | let x = e1 in e2

| case e1 of (x1, x2) ! e2

v ::= | �x.e | (x1, x2)
Annotated expressions and values

e ::= x | v | e x | let x
m
= e1 in e2

| case e1 of (x1, x2) ! e2

v ::= | �m
x.e | (x1, x2)

Usage demands and multi-demands
d ::= C

n(d) | U (d†
1 , d

†
2) | U | HU

d
† ::= A | n⇤d
n ::= 1 | !
m ::= 0 | 1 | !

Non-syntactic demand equalities
C

!(U) ⌘ U

U (!⇤U ,!⇤U) ⌘ U

U (A,A) ⌘ HU

Usage types
⌧ ::= • | d† ! ⌧

Usage type expansion
d
† ! ⌧ � d

† ! ⌧
• � !⇤U ! •

Free-variable usage environments (fv-usage)
' ::= (x :d†),' | ✏

Auxiliary notation on environments
'(x) = d

† when (x :d†) 2 '
A otherwise

Usage signatures and signature environments
⇢ ::= hk ; ⌧ ; 'i k 2 Z>0

P ::= (x :⇢),P | ✏

transform(hk ; ⌧ ; 'i, d)
= h⌧ ; 'i if d v C

1(. . . k -fold . . .C 1(U))
= h!⇤⌧ ; !⇤'i otherwise

Figure 1: Syntax of terms, values, usage types, and environments

• C
n(d) applies to functions. The function is called at most n

times, and on each call the result is used as described by d .
Call demands are, to the best of our knowledge, new.

• U , or “used”, indicating no information; the demand can use
the value in an arbitrary way.

• HU , or “head-used”, is a special case; it is the demand that seq
places on its first argument: seq ::HU ! U ! •.

A usage demand d always uses the root of the value exactly once;
it cannot express absence or multiple evaluation. That is done by
d
†, which is either A (absent), or n ⇤d indicating that the value is

used at most n times in a way described by d . In both C
n(d) and

n⇤d , the multiplicity n is either 1 or ! (meaning “many”). Notice
that a call demand C

n(d) has a d inside it, not a d
†: if a function

is called, its body is evaluated exactly once. This is different from
pairs. For example, if we have

let x = (e1, e2) in fst x + fst x

then e1 is evaluated twice.

Both U and HU come with some non-syntactic equalities, denoted
by ⌘ in Figure 1 and necessary for the proof of well-typedness
(Section 4). For example, U is equivalent to a pair demand whose
components are used many times, or a many-call-demand where
the result is used in an arbitrary way. Similarly, for pairs HU is
equivalent to U (A,A), while for functions HU is equivalent to
C

0(A), if we had such a thing. In the rest of the paper all definitions

3

general demand

Cardinality demands

Usage cardinalities

Usage demands

2.4 Thunk cardinality
Consider these definitions

f :: Int -> Int -> Int
f x c = if x > 0 then c + 1 else

if x == 0 then 0 else c - 1

g y = f y (costly y)

Since f is not strict in c, g must build a thunk for (costly y) to
pass to f. In call-by-need evaluation, thunks are memoised. That
is, when a thunk is evaluated at run-time, it is overwritten with the
value so that if it is evaluated a second time the already-computed
value can be returned immediately. But in this case we can see
that f never evaluates its second argument more than once, so
the memoisation step is entirely wasted. We call these single-entry

thunks.
Memoisation is not expensive, but it is certainly not free. Opera-
tionally, a pointer to the thunk must be pushed on the stack when
evaluation starts, it must be black-holed to avoid space leaks (Jones
1992), and the update involves a memory write. If cardinality anal-
ysis can identify single-entry thunks, as well as one-shot lambdas,
that would be a Good Thing. And so it can: we give f the usage
signature:

f :: !⇤U ! 1⇤U ! •
The “!⇤” modifier says that f may evaluate its first argument more
than once, while the “1⇤” says that it evaluates its second argument
at most once.

2.5 Call vs evaluation
For functions, there is a difference between being evaluated once
and called once, because of Haskell’s seq function. For example:

f1 g = g ‘seq‘ 1 -- f1 :: 1⇤U ! •
f2 g = g ‘seq‘ g 2 -- f2 :: !⇤C 1(U) ! •
f3 g = g 3 -- f3 :: 1⇤C 1(U) ! •

The function seq evaluates its first argument (to head-normal form)
and returns its second argument. If its first argument is a function,
the function is evaluated to a lambda, but not called. Notice that
f2’s usage type says that g is evaluated more than once, but applied
only once. For example consider the call

f (\x. x + y)

How many times is y evaluated? For f equal to f1 the answer is
zero; for f2 and f3 it is one.

3. Formalising Cardinality Analysis
We now present our analysis in detail. The syntax of the language
we analyse is given in Figure 1. It is quite conventional: just lambda
calculus with pairs and (non-recursive) let-expressions. Constants
 include literals and primitive functions over literals, as well as
Haskell’s built-in seq. We use A-normal form (Sabry and Felleisen
1992) so that the issues concerning thunks show up only for let
and not also for function arguments.

3.1 Usage demands
Our cardinality analysis is a backwards analysis over an abstract
domain of usage demands. As with any such analysis, the abstract
domain embodies a balance between the cost of the analysis and
its precision. Our particular choices are expressed in the syntax of
usage demands, given in Figure 1. A usage demand d is one of the
following:
• U (d†

1 , d
†
2) applies to pairs. The pair itself is evaluated and its

first component is used as described by d
†
1 and its second by d

†
2 .

Expressions and values
e ::= x | v | e x | let x = e1 in e2

| case e1 of (x1, x2) ! e2

v ::= | �x.e | (x1, x2)
Annotated expressions and values

e ::= x | v | e x | let x
m
= e1 in e2

| case e1 of (x1, x2) ! e2

v ::= | �m
x.e | (x1, x2)

Usage demands and multi-demands
d ::= C

n(d) | U (d†
1 , d

†
2) | U | HU

d
† ::= A | n⇤d
n ::= 1 | !
m ::= 0 | 1 | !

Non-syntactic demand equalities
C

!(U) ⌘ U

U (!⇤U ,!⇤U) ⌘ U

U (A,A) ⌘ HU

Usage types
⌧ ::= • | d† ! ⌧

Usage type expansion
d
† ! ⌧ � d

† ! ⌧
• � !⇤U ! •

Free-variable usage environments (fv-usage)
' ::= (x :d†),' | ✏

Auxiliary notation on environments
'(x) = d

† when (x :d†) 2 '
A otherwise

Usage signatures and signature environments
⇢ ::= hk ; ⌧ ; 'i k 2 Z>0

P ::= (x :⇢),P | ✏

transform(hk ; ⌧ ; 'i, d)
= h⌧ ; 'i if d v C

1(. . . k -fold . . .C 1(U))
= h!⇤⌧ ; !⇤'i otherwise

Figure 1: Syntax of terms, values, usage types, and environments

• C
n(d) applies to functions. The function is called at most n

times, and on each call the result is used as described by d .
Call demands are, to the best of our knowledge, new.

• U , or “used”, indicating no information; the demand can use
the value in an arbitrary way.

• HU , or “head-used”, is a special case; it is the demand that seq
places on its first argument: seq ::HU ! U ! •.

A usage demand d always uses the root of the value exactly once;
it cannot express absence or multiple evaluation. That is done by
d
†, which is either A (absent), or n ⇤d indicating that the value is

used at most n times in a way described by d . In both C
n(d) and

n⇤d , the multiplicity n is either 1 or ! (meaning “many”). Notice
that a call demand C

n(d) has a d inside it, not a d
†: if a function

is called, its body is evaluated exactly once. This is different from
pairs. For example, if we have

let x = (e1, e2) in fst x + fst x

then e1 is evaluated twice.

Both U and HU come with some non-syntactic equalities, denoted
by ⌘ in Figure 1 and necessary for the proof of well-typedness
(Section 4). For example, U is equivalent to a pair demand whose
components are used many times, or a many-call-demand where
the result is used in an arbitrary way. Similarly, for pairs HU is
equivalent to U (A,A), while for functions HU is equivalent to
C

0(A), if we had such a thing. In the rest of the paper all definitions

3

2.4 Thunk cardinality
Consider these definitions

f :: Int -> Int -> Int
f x c = if x > 0 then c + 1 else

if x == 0 then 0 else c - 1

g y = f y (costly y)

Since f is not strict in c, g must build a thunk for (costly y) to
pass to f. In call-by-need evaluation, thunks are memoised. That
is, when a thunk is evaluated at run-time, it is overwritten with the
value so that if it is evaluated a second time the already-computed
value can be returned immediately. But in this case we can see
that f never evaluates its second argument more than once, so
the memoisation step is entirely wasted. We call these single-entry

thunks.
Memoisation is not expensive, but it is certainly not free. Opera-
tionally, a pointer to the thunk must be pushed on the stack when
evaluation starts, it must be black-holed to avoid space leaks (Jones
1992), and the update involves a memory write. If cardinality anal-
ysis can identify single-entry thunks, as well as one-shot lambdas,
that would be a Good Thing. And so it can: we give f the usage
signature:

f :: !⇤U ! 1⇤U ! •
The “!⇤” modifier says that f may evaluate its first argument more
than once, while the “1⇤” says that it evaluates its second argument
at most once.

2.5 Call vs evaluation
For functions, there is a difference between being evaluated once
and called once, because of Haskell’s seq function. For example:

f1 g = g ‘seq‘ 1 -- f1 :: 1⇤U ! •
f2 g = g ‘seq‘ g 2 -- f2 :: !⇤C 1(U) ! •
f3 g = g 3 -- f3 :: 1⇤C 1(U) ! •

The function seq evaluates its first argument (to head-normal form)
and returns its second argument. If its first argument is a function,
the function is evaluated to a lambda, but not called. Notice that
f2’s usage type says that g is evaluated more than once, but applied
only once. For example consider the call

f (\x. x + y)

How many times is y evaluated? For f equal to f1 the answer is
zero; for f2 and f3 it is one.

3. Formalising Cardinality Analysis
We now present our analysis in detail. The syntax of the language
we analyse is given in Figure 1. It is quite conventional: just lambda
calculus with pairs and (non-recursive) let-expressions. Constants
 include literals and primitive functions over literals, as well as
Haskell’s built-in seq. We use A-normal form (Sabry and Felleisen
1992) so that the issues concerning thunks show up only for let
and not also for function arguments.

3.1 Usage demands
Our cardinality analysis is a backwards analysis over an abstract
domain of usage demands. As with any such analysis, the abstract
domain embodies a balance between the cost of the analysis and
its precision. Our particular choices are expressed in the syntax of
usage demands, given in Figure 1. A usage demand d is one of the
following:
• U (d†

1 , d
†
2) applies to pairs. The pair itself is evaluated and its

first component is used as described by d
†
1 and its second by d

†
2 .

Expressions and values
e ::= x | v | e x | let x = e1 in e2

| case e1 of (x1, x2) ! e2

v ::= | �x.e | (x1, x2)
Annotated expressions and values

e ::= x | v | e x | let x
m
= e1 in e2

| case e1 of (x1, x2) ! e2

v ::= | �m
x.e | (x1, x2)

Usage demands and multi-demands
d ::= C

n(d) | U (d†
1 , d

†
2) | U | HU

d
† ::= A | n⇤d
n ::= 1 | !
m ::= 0 | 1 | !

Non-syntactic demand equalities
C

!(U) ⌘ U

U (!⇤U ,!⇤U) ⌘ U

U (A,A) ⌘ HU

Usage types
⌧ ::= • | d† ! ⌧

Usage type expansion
d
† ! ⌧ � d

† ! ⌧
• � !⇤U ! •

Free-variable usage environments (fv-usage)
' ::= (x :d†),' | ✏

Auxiliary notation on environments
'(x) = d

† when (x :d†) 2 '
A otherwise

Usage signatures and signature environments
⇢ ::= hk ; ⌧ ; 'i k 2 Z>0

P ::= (x :⇢),P | ✏

transform(hk ; ⌧ ; 'i, d)
= h⌧ ; 'i if d v C

1(. . . k -fold . . .C 1(U))
= h!⇤⌧ ; !⇤'i otherwise

Figure 1: Syntax of terms, values, usage types, and environments

• C
n(d) applies to functions. The function is called at most n

times, and on each call the result is used as described by d .
Call demands are, to the best of our knowledge, new.

• U , or “used”, indicating no information; the demand can use
the value in an arbitrary way.

• HU , or “head-used”, is a special case; it is the demand that seq
places on its first argument: seq ::HU ! U ! •.

A usage demand d always uses the root of the value exactly once;
it cannot express absence or multiple evaluation. That is done by
d
†, which is either A (absent), or n ⇤d indicating that the value is

used at most n times in a way described by d . In both C
n(d) and

n⇤d , the multiplicity n is either 1 or ! (meaning “many”). Notice
that a call demand C

n(d) has a d inside it, not a d
†: if a function

is called, its body is evaluated exactly once. This is different from
pairs. For example, if we have

let x = (e1, e2) in fst x + fst x

then e1 is evaluated twice.

Both U and HU come with some non-syntactic equalities, denoted
by ⌘ in Figure 1 and necessary for the proof of well-typedness
(Section 4). For example, U is equivalent to a pair demand whose
components are used many times, or a many-call-demand where
the result is used in an arbitrary way. Similarly, for pairs HU is
equivalent to U (A,A), while for functions HU is equivalent to
C

0(A), if we had such a thing. In the rest of the paper all definitions

3

2.4 Thunk cardinality
Consider these definitions

f :: Int -> Int -> Int
f x c = if x > 0 then c + 1 else

if x == 0 then 0 else c - 1

g y = f y (costly y)

Since f is not strict in c, g must build a thunk for (costly y) to
pass to f. In call-by-need evaluation, thunks are memoised. That
is, when a thunk is evaluated at run-time, it is overwritten with the
value so that if it is evaluated a second time the already-computed
value can be returned immediately. But in this case we can see
that f never evaluates its second argument more than once, so
the memoisation step is entirely wasted. We call these single-entry

thunks.
Memoisation is not expensive, but it is certainly not free. Opera-
tionally, a pointer to the thunk must be pushed on the stack when
evaluation starts, it must be black-holed to avoid space leaks (Jones
1992), and the update involves a memory write. If cardinality anal-
ysis can identify single-entry thunks, as well as one-shot lambdas,
that would be a Good Thing. And so it can: we give f the usage
signature:

f :: !⇤U ! 1⇤U ! •
The “!⇤” modifier says that f may evaluate its first argument more
than once, while the “1⇤” says that it evaluates its second argument
at most once.

2.5 Call vs evaluation
For functions, there is a difference between being evaluated once
and called once, because of Haskell’s seq function. For example:

f1 g = g ‘seq‘ 1 -- f1 :: 1⇤U ! •
f2 g = g ‘seq‘ g 2 -- f2 :: !⇤C 1(U) ! •
f3 g = g 3 -- f3 :: 1⇤C 1(U) ! •

The function seq evaluates its first argument (to head-normal form)
and returns its second argument. If its first argument is a function,
the function is evaluated to a lambda, but not called. Notice that
f2’s usage type says that g is evaluated more than once, but applied
only once. For example consider the call

f (\x. x + y)

How many times is y evaluated? For f equal to f1 the answer is
zero; for f2 and f3 it is one.

3. Formalising Cardinality Analysis
We now present our analysis in detail. The syntax of the language
we analyse is given in Figure 1. It is quite conventional: just lambda
calculus with pairs and (non-recursive) let-expressions. Constants
 include literals and primitive functions over literals, as well as
Haskell’s built-in seq. We use A-normal form (Sabry and Felleisen
1992) so that the issues concerning thunks show up only for let
and not also for function arguments.

3.1 Usage demands
Our cardinality analysis is a backwards analysis over an abstract
domain of usage demands. As with any such analysis, the abstract
domain embodies a balance between the cost of the analysis and
its precision. Our particular choices are expressed in the syntax of
usage demands, given in Figure 1. A usage demand d is one of the
following:
• U (d†

1 , d
†
2) applies to pairs. The pair itself is evaluated and its

first component is used as described by d
†
1 and its second by d

†
2 .

Expressions and values
e ::= x | v | e x | let x = e1 in e2

| case e1 of (x1, x2) ! e2

v ::= | �x.e | (x1, x2)
Annotated expressions and values

e ::= x | v | e x | let x
m
= e1 in e2

| case e1 of (x1, x2) ! e2

v ::= | �m
x.e | (x1, x2)

Usage demands and multi-demands
d ::= C

n(d) | U (d†
1 , d

†
2) | U | HU

d
† ::= A | n⇤d
n ::= 1 | !
m ::= 0 | 1 | !

Non-syntactic demand equalities
C

!(U) ⌘ U

U (!⇤U ,!⇤U) ⌘ U

U (A,A) ⌘ HU

Usage types
⌧ ::= • | d† ! ⌧

Usage type expansion
d
† ! ⌧ � d

† ! ⌧
• � !⇤U ! •

Free-variable usage environments (fv-usage)
' ::= (x :d†),' | ✏

Auxiliary notation on environments
'(x) = d

† when (x :d†) 2 '
A otherwise

Usage signatures and signature environments
⇢ ::= hk ; ⌧ ; 'i k 2 Z>0

P ::= (x :⇢),P | ✏

transform(hk ; ⌧ ; 'i, d)
= h⌧ ; 'i if d v C

1(. . . k -fold . . .C 1(U))
= h!⇤⌧ ; !⇤'i otherwise

Figure 1: Syntax of terms, values, usage types, and environments

• C
n(d) applies to functions. The function is called at most n

times, and on each call the result is used as described by d .
Call demands are, to the best of our knowledge, new.

• U , or “used”, indicating no information; the demand can use
the value in an arbitrary way.

• HU , or “head-used”, is a special case; it is the demand that seq
places on its first argument: seq ::HU ! U ! •.

A usage demand d always uses the root of the value exactly once;
it cannot express absence or multiple evaluation. That is done by
d
†, which is either A (absent), or n ⇤d indicating that the value is

used at most n times in a way described by d . In both C
n(d) and

n⇤d , the multiplicity n is either 1 or ! (meaning “many”). Notice
that a call demand C

n(d) has a d inside it, not a d
†: if a function

is called, its body is evaluated exactly once. This is different from
pairs. For example, if we have

let x = (e1, e2) in fst x + fst x

then e1 is evaluated twice.

Both U and HU come with some non-syntactic equalities, denoted
by ⌘ in Figure 1 and necessary for the proof of well-typedness
(Section 4). For example, U is equivalent to a pair demand whose
components are used many times, or a many-call-demand where
the result is used in an arbitrary way. Similarly, for pairs HU is
equivalent to U (A,A), while for functions HU is equivalent to
C

0(A), if we had such a thing. In the rest of the paper all definitions

3

absent value

Cardinality demands

Usage cardinalities

Usage demands

2.4 Thunk cardinality
Consider these definitions

f :: Int -> Int -> Int
f x c = if x > 0 then c + 1 else

if x == 0 then 0 else c - 1

g y = f y (costly y)

Since f is not strict in c, g must build a thunk for (costly y) to
pass to f. In call-by-need evaluation, thunks are memoised. That
is, when a thunk is evaluated at run-time, it is overwritten with the
value so that if it is evaluated a second time the already-computed
value can be returned immediately. But in this case we can see
that f never evaluates its second argument more than once, so
the memoisation step is entirely wasted. We call these single-entry

thunks.
Memoisation is not expensive, but it is certainly not free. Opera-
tionally, a pointer to the thunk must be pushed on the stack when
evaluation starts, it must be black-holed to avoid space leaks (Jones
1992), and the update involves a memory write. If cardinality anal-
ysis can identify single-entry thunks, as well as one-shot lambdas,
that would be a Good Thing. And so it can: we give f the usage
signature:

f :: !⇤U ! 1⇤U ! •
The “!⇤” modifier says that f may evaluate its first argument more
than once, while the “1⇤” says that it evaluates its second argument
at most once.

2.5 Call vs evaluation
For functions, there is a difference between being evaluated once
and called once, because of Haskell’s seq function. For example:

f1 g = g ‘seq‘ 1 -- f1 :: 1⇤U ! •
f2 g = g ‘seq‘ g 2 -- f2 :: !⇤C 1(U) ! •
f3 g = g 3 -- f3 :: 1⇤C 1(U) ! •

The function seq evaluates its first argument (to head-normal form)
and returns its second argument. If its first argument is a function,
the function is evaluated to a lambda, but not called. Notice that
f2’s usage type says that g is evaluated more than once, but applied
only once. For example consider the call

f (\x. x + y)

How many times is y evaluated? For f equal to f1 the answer is
zero; for f2 and f3 it is one.

3. Formalising Cardinality Analysis
We now present our analysis in detail. The syntax of the language
we analyse is given in Figure 1. It is quite conventional: just lambda
calculus with pairs and (non-recursive) let-expressions. Constants
 include literals and primitive functions over literals, as well as
Haskell’s built-in seq. We use A-normal form (Sabry and Felleisen
1992) so that the issues concerning thunks show up only for let
and not also for function arguments.

3.1 Usage demands
Our cardinality analysis is a backwards analysis over an abstract
domain of usage demands. As with any such analysis, the abstract
domain embodies a balance between the cost of the analysis and
its precision. Our particular choices are expressed in the syntax of
usage demands, given in Figure 1. A usage demand d is one of the
following:
• U (d†

1 , d
†
2) applies to pairs. The pair itself is evaluated and its

first component is used as described by d
†
1 and its second by d

†
2 .

Expressions and values
e ::= x | v | e x | let x = e1 in e2

| case e1 of (x1, x2) ! e2

v ::= | �x.e | (x1, x2)
Annotated expressions and values

e ::= x | v | e x | let x
m
= e1 in e2

| case e1 of (x1, x2) ! e2

v ::= | �m
x.e | (x1, x2)

Usage demands and multi-demands
d ::= C

n(d) | U (d†
1 , d

†
2) | U | HU

d
† ::= A | n⇤d
n ::= 1 | !
m ::= 0 | 1 | !

Non-syntactic demand equalities
C

!(U) ⌘ U

U (!⇤U ,!⇤U) ⌘ U

U (A,A) ⌘ HU

Usage types
⌧ ::= • | d† ! ⌧

Usage type expansion
d
† ! ⌧ � d

† ! ⌧
• � !⇤U ! •

Free-variable usage environments (fv-usage)
' ::= (x :d†),' | ✏

Auxiliary notation on environments
'(x) = d

† when (x :d†) 2 '
A otherwise

Usage signatures and signature environments
⇢ ::= hk ; ⌧ ; 'i k 2 Z>0

P ::= (x :⇢),P | ✏

transform(hk ; ⌧ ; 'i, d)
= h⌧ ; 'i if d v C

1(. . . k -fold . . .C 1(U))
= h!⇤⌧ ; !⇤'i otherwise

Figure 1: Syntax of terms, values, usage types, and environments

• C
n(d) applies to functions. The function is called at most n

times, and on each call the result is used as described by d .
Call demands are, to the best of our knowledge, new.

• U , or “used”, indicating no information; the demand can use
the value in an arbitrary way.

• HU , or “head-used”, is a special case; it is the demand that seq
places on its first argument: seq ::HU ! U ! •.

A usage demand d always uses the root of the value exactly once;
it cannot express absence or multiple evaluation. That is done by
d
†, which is either A (absent), or n ⇤d indicating that the value is

used at most n times in a way described by d . In both C
n(d) and

n⇤d , the multiplicity n is either 1 or ! (meaning “many”). Notice
that a call demand C

n(d) has a d inside it, not a d
†: if a function

is called, its body is evaluated exactly once. This is different from
pairs. For example, if we have

let x = (e1, e2) in fst x + fst x

then e1 is evaluated twice.

Both U and HU come with some non-syntactic equalities, denoted
by ⌘ in Figure 1 and necessary for the proof of well-typedness
(Section 4). For example, U is equivalent to a pair demand whose
components are used many times, or a many-call-demand where
the result is used in an arbitrary way. Similarly, for pairs HU is
equivalent to U (A,A), while for functions HU is equivalent to
C

0(A), if we had such a thing. In the rest of the paper all definitions

3

2.4 Thunk cardinality
Consider these definitions

f :: Int -> Int -> Int
f x c = if x > 0 then c + 1 else

if x == 0 then 0 else c - 1

g y = f y (costly y)

Since f is not strict in c, g must build a thunk for (costly y) to
pass to f. In call-by-need evaluation, thunks are memoised. That
is, when a thunk is evaluated at run-time, it is overwritten with the
value so that if it is evaluated a second time the already-computed
value can be returned immediately. But in this case we can see
that f never evaluates its second argument more than once, so
the memoisation step is entirely wasted. We call these single-entry

thunks.
Memoisation is not expensive, but it is certainly not free. Opera-
tionally, a pointer to the thunk must be pushed on the stack when
evaluation starts, it must be black-holed to avoid space leaks (Jones
1992), and the update involves a memory write. If cardinality anal-
ysis can identify single-entry thunks, as well as one-shot lambdas,
that would be a Good Thing. And so it can: we give f the usage
signature:

f :: !⇤U ! 1⇤U ! •
The “!⇤” modifier says that f may evaluate its first argument more
than once, while the “1⇤” says that it evaluates its second argument
at most once.

2.5 Call vs evaluation
For functions, there is a difference between being evaluated once
and called once, because of Haskell’s seq function. For example:

f1 g = g ‘seq‘ 1 -- f1 :: 1⇤U ! •
f2 g = g ‘seq‘ g 2 -- f2 :: !⇤C 1(U) ! •
f3 g = g 3 -- f3 :: 1⇤C 1(U) ! •

The function seq evaluates its first argument (to head-normal form)
and returns its second argument. If its first argument is a function,
the function is evaluated to a lambda, but not called. Notice that
f2’s usage type says that g is evaluated more than once, but applied
only once. For example consider the call

f (\x. x + y)

How many times is y evaluated? For f equal to f1 the answer is
zero; for f2 and f3 it is one.

3. Formalising Cardinality Analysis
We now present our analysis in detail. The syntax of the language
we analyse is given in Figure 1. It is quite conventional: just lambda
calculus with pairs and (non-recursive) let-expressions. Constants
 include literals and primitive functions over literals, as well as
Haskell’s built-in seq. We use A-normal form (Sabry and Felleisen
1992) so that the issues concerning thunks show up only for let
and not also for function arguments.

3.1 Usage demands
Our cardinality analysis is a backwards analysis over an abstract
domain of usage demands. As with any such analysis, the abstract
domain embodies a balance between the cost of the analysis and
its precision. Our particular choices are expressed in the syntax of
usage demands, given in Figure 1. A usage demand d is one of the
following:
• U (d†

1 , d
†
2) applies to pairs. The pair itself is evaluated and its

first component is used as described by d
†
1 and its second by d

†
2 .

Expressions and values
e ::= x | v | e x | let x = e1 in e2

| case e1 of (x1, x2) ! e2

v ::= | �x.e | (x1, x2)
Annotated expressions and values

e ::= x | v | e x | let x
m
= e1 in e2

| case e1 of (x1, x2) ! e2

v ::= | �m
x.e | (x1, x2)

Usage demands and multi-demands
d ::= C

n(d) | U (d†
1 , d

†
2) | U | HU

d
† ::= A | n⇤d
n ::= 1 | !
m ::= 0 | 1 | !

Non-syntactic demand equalities
C

!(U) ⌘ U

U (!⇤U ,!⇤U) ⌘ U

U (A,A) ⌘ HU

Usage types
⌧ ::= • | d† ! ⌧

Usage type expansion
d
† ! ⌧ � d

† ! ⌧
• � !⇤U ! •

Free-variable usage environments (fv-usage)
' ::= (x :d†),' | ✏

Auxiliary notation on environments
'(x) = d

† when (x :d†) 2 '
A otherwise

Usage signatures and signature environments
⇢ ::= hk ; ⌧ ; 'i k 2 Z>0

P ::= (x :⇢),P | ✏

transform(hk ; ⌧ ; 'i, d)
= h⌧ ; 'i if d v C

1(. . . k -fold . . .C 1(U))
= h!⇤⌧ ; !⇤'i otherwise

Figure 1: Syntax of terms, values, usage types, and environments

• C
n(d) applies to functions. The function is called at most n

times, and on each call the result is used as described by d .
Call demands are, to the best of our knowledge, new.

• U , or “used”, indicating no information; the demand can use
the value in an arbitrary way.

• HU , or “head-used”, is a special case; it is the demand that seq
places on its first argument: seq ::HU ! U ! •.

A usage demand d always uses the root of the value exactly once;
it cannot express absence or multiple evaluation. That is done by
d
†, which is either A (absent), or n ⇤d indicating that the value is

used at most n times in a way described by d . In both C
n(d) and

n⇤d , the multiplicity n is either 1 or ! (meaning “many”). Notice
that a call demand C

n(d) has a d inside it, not a d
†: if a function

is called, its body is evaluated exactly once. This is different from
pairs. For example, if we have

let x = (e1, e2) in fst x + fst x

then e1 is evaluated twice.

Both U and HU come with some non-syntactic equalities, denoted
by ⌘ in Figure 1 and necessary for the proof of well-typedness
(Section 4). For example, U is equivalent to a pair demand whose
components are used many times, or a many-call-demand where
the result is used in an arbitrary way. Similarly, for pairs HU is
equivalent to U (A,A), while for functions HU is equivalent to
C

0(A), if we had such a thing. In the rest of the paper all definitions

3

2.4 Thunk cardinality
Consider these definitions

f :: Int -> Int -> Int
f x c = if x > 0 then c + 1 else

if x == 0 then 0 else c - 1

g y = f y (costly y)

Since f is not strict in c, g must build a thunk for (costly y) to
pass to f. In call-by-need evaluation, thunks are memoised. That
is, when a thunk is evaluated at run-time, it is overwritten with the
value so that if it is evaluated a second time the already-computed
value can be returned immediately. But in this case we can see
that f never evaluates its second argument more than once, so
the memoisation step is entirely wasted. We call these single-entry

thunks.
Memoisation is not expensive, but it is certainly not free. Opera-
tionally, a pointer to the thunk must be pushed on the stack when
evaluation starts, it must be black-holed to avoid space leaks (Jones
1992), and the update involves a memory write. If cardinality anal-
ysis can identify single-entry thunks, as well as one-shot lambdas,
that would be a Good Thing. And so it can: we give f the usage
signature:

f :: !⇤U ! 1⇤U ! •
The “!⇤” modifier says that f may evaluate its first argument more
than once, while the “1⇤” says that it evaluates its second argument
at most once.

2.5 Call vs evaluation
For functions, there is a difference between being evaluated once
and called once, because of Haskell’s seq function. For example:

f1 g = g ‘seq‘ 1 -- f1 :: 1⇤U ! •
f2 g = g ‘seq‘ g 2 -- f2 :: !⇤C 1(U) ! •
f3 g = g 3 -- f3 :: 1⇤C 1(U) ! •

The function seq evaluates its first argument (to head-normal form)
and returns its second argument. If its first argument is a function,
the function is evaluated to a lambda, but not called. Notice that
f2’s usage type says that g is evaluated more than once, but applied
only once. For example consider the call

f (\x. x + y)

How many times is y evaluated? For f equal to f1 the answer is
zero; for f2 and f3 it is one.

3. Formalising Cardinality Analysis
We now present our analysis in detail. The syntax of the language
we analyse is given in Figure 1. It is quite conventional: just lambda
calculus with pairs and (non-recursive) let-expressions. Constants
 include literals and primitive functions over literals, as well as
Haskell’s built-in seq. We use A-normal form (Sabry and Felleisen
1992) so that the issues concerning thunks show up only for let
and not also for function arguments.

3.1 Usage demands
Our cardinality analysis is a backwards analysis over an abstract
domain of usage demands. As with any such analysis, the abstract
domain embodies a balance between the cost of the analysis and
its precision. Our particular choices are expressed in the syntax of
usage demands, given in Figure 1. A usage demand d is one of the
following:
• U (d†

1 , d
†
2) applies to pairs. The pair itself is evaluated and its

first component is used as described by d
†
1 and its second by d

†
2 .

Expressions and values
e ::= x | v | e x | let x = e1 in e2

| case e1 of (x1, x2) ! e2

v ::= | �x.e | (x1, x2)
Annotated expressions and values

e ::= x | v | e x | let x
m
= e1 in e2

| case e1 of (x1, x2) ! e2

v ::= | �m
x.e | (x1, x2)

Usage demands and multi-demands
d ::= C

n(d) | U (d†
1 , d

†
2) | U | HU

d
† ::= A | n⇤d
n ::= 1 | !
m ::= 0 | 1 | !

Non-syntactic demand equalities
C

!(U) ⌘ U

U (!⇤U ,!⇤U) ⌘ U

U (A,A) ⌘ HU

Usage types
⌧ ::= • | d† ! ⌧

Usage type expansion
d
† ! ⌧ � d

† ! ⌧
• � !⇤U ! •

Free-variable usage environments (fv-usage)
' ::= (x :d†),' | ✏

Auxiliary notation on environments
'(x) = d

† when (x :d†) 2 '
A otherwise

Usage signatures and signature environments
⇢ ::= hk ; ⌧ ; 'i k 2 Z>0

P ::= (x :⇢),P | ✏

transform(hk ; ⌧ ; 'i, d)
= h⌧ ; 'i if d v C

1(. . . k -fold . . .C 1(U))
= h!⇤⌧ ; !⇤'i otherwise

Figure 1: Syntax of terms, values, usage types, and environments

• C
n(d) applies to functions. The function is called at most n

times, and on each call the result is used as described by d .
Call demands are, to the best of our knowledge, new.

• U , or “used”, indicating no information; the demand can use
the value in an arbitrary way.

• HU , or “head-used”, is a special case; it is the demand that seq
places on its first argument: seq ::HU ! U ! •.

A usage demand d always uses the root of the value exactly once;
it cannot express absence or multiple evaluation. That is done by
d
†, which is either A (absent), or n ⇤d indicating that the value is

used at most n times in a way described by d . In both C
n(d) and

n⇤d , the multiplicity n is either 1 or ! (meaning “many”). Notice
that a call demand C

n(d) has a d inside it, not a d
†: if a function

is called, its body is evaluated exactly once. This is different from
pairs. For example, if we have

let x = (e1, e2) in fst x + fst x

then e1 is evaluated twice.

Both U and HU come with some non-syntactic equalities, denoted
by ⌘ in Figure 1 and necessary for the proof of well-typedness
(Section 4). For example, U is equivalent to a pair demand whose
components are used many times, or a many-call-demand where
the result is used in an arbitrary way. Similarly, for pairs HU is
equivalent to U (A,A), while for functions HU is equivalent to
C

0(A), if we had such a thing. In the rest of the paper all definitions

3

used at most n times
Cardinality demands

Usage cardinalities

Usage demands

Usage Types
(how a function uses its arguments)

We discuss related work in Section 8. Distinctive features of our
work are (a) the notion of call demands, (b) a full implementation
measured against a state of the art optimising compiler, and (c) the
combination of simplicity with worthwhile performance improve-
ments.

2. What is Cardinality Analysis?
Cardinality analysis answers three inter-related questions, in the
setting of a non-strict, pure functional language like Haskell:
• How many times is a particular, syntactic lambda-expression

called (Section 2.1)?
• Which components of a data structure are never evaluated; that

is, are absent (Section 2.3)?
• How many times is a particular, syntactic thunk evaluated (Sec-

tion 2.4)?

2.1 Call cardinality
We saw in the introduction an example where it is helpful to
know when a function calls its argument at most once. A lambda
that is called at most once is called a one-shot lambda, and they
are extremely common in functional programming: for example a
continuation is usually one-shot. So cardinality analysis can be a
big win when optimising continuation-heavy programs.
Nor is that all. As we saw in the Introduction, inlining under a one-
shot lambda (to transform f1 into f2) allows short-cut deforesta-
tion to fuse two otherwise-separate calls of map. But short-cut de-
forestation itself introduces many calls of of the function build:
build :: (forall b. (a -> b -> b) -> b -> b) -> [a]
build g = g (:) []

You can see that build calls its argument exactly once, and inlin-
ing ys in calls like (build (\cn. ...ys...)) turns out to be
crucial to making short-cut deforestation work in practice. Gill de-
votes a section of his thesis to elucidating this point (Gill 1996,
Chapter 4.3). Gill lacked an analysis for one-shot lambdas, so his
implementation (still extant in GHC today) relies on a gross hack:
he taught GHC’s optimiser to behave specially for build itself, and
a couple of other functions. No user-defined function will have this
good behaviour. Our analysis subsumes the hack, by providing an
analysis that deduces the correct one-shot information for build,
as well as many other functions.

2.2 Currying
In a higher order language with curried functions, we need to be
careful about the details. For example, consider
f3 a = wurble a (\x.let t = costly x in \y. t+y)

wurble1 a g = g 2 a + g 3 a
wurble2 a g = sum (map (g a) [1..1000])

If wurble was wurble1, then in f3 it would be best to inline t at
its use site, thus:
f4 a = wurble1 a (\x.\y. costly x + y)

The transformed f4 is much better than f3: it avoids allocating a
thunk for t, and avoids allocating a function closure for the \y.
But if f3 called wurble2 instead, such a transformation would be
disastrous. Why? Because wurble2 applies its argument g to one
argument a, and the function thus computed is applied to each of
1000 integers. In f3 we will compute (costly a) once, but f4
will compute it 1000 times, which is arbitrarily bad.
So our analysis of wurble2 must be able to report “wurble2’s
argument g is called1 once (applied to one argument), and the

1 We will always use “called” to mean “applied to one argument”.

result is called many times”. We formalise this by giving a usage

signature to wurble, like this:

wurble1 :: U ! C
!(C 1(U)) ! •

wurble2 :: U ! C
1(C!(U)) ! •

The notation C
!(C 1(U)) is a usage demand: it describes how a

(function) value is used. The demand type U ! C
!(C 1(U)) ! •

describes how a function uses its arguments, therefore it gives a
usage demand for each argument. (The “•” has no significance; we
are just used to seeing something after the final arrow!) Informally,
the C

1(d) means “this argument is called once (applied to one
argument), and the result is used with usage d”, whereas C

!(d)
means “this argument may be called many times, with each result
used with usage d”. The U means “is used in some unknown way
(or even not used at all)”. Note that wurble1’s second argument
usage is C

!(C 1(U)), not C
!(C!(U)); that is, in all cases the

result of applying g to one argument is then called only once.

2.3 Absence
Consider this function
f x = case x of (p,q) -> <cbody>

A strictness analyser can see that f is strict in x, and so can use
call-by-value. Moreover, rather than allocate a pair that is passed to
f, which immediately takes it apart, GHC uses a worker/wrapper
transformation to pass the pieces separately, thus:
f x = case x of (p,q) -> fw p q
fw p q = <cbody>

Now f (the “wrapper”) is small, and can be inlined at f’s call
sites, often eliminating the allocation of the pair; meanwhile fw
(the “worker”) does the actual work. Strictness analysis, and the
worker/wrapper transform to exploit its results, are hugely impor-
tant to generating efficient code for lazy programs (Peyton Jones
and Partain 1994; Peyton Jones and Santos 1998).
In general, f’s right-hand side often does not have a syntacti-

cally visible case expression. For example, what if f simply
called another function g that was strict in x? Fortunately the
worker/wrapper transform is easy to generalise. Suppose the right
hand side of f was just <fbody>. Then we would transform to
f x = case x of (p,q) -> fw p q
fw p q = let x = (p,q) in <fbody>

Now we hope that the binding for x will cancel with case expres-
sions in <fbody>, and indeed it usually proves to be so (Peyton
Jones and Santos 1998).
But what if <fbody> did not use q at all? Then it would be stupid
to pass q to fw. We would rather transform to:
f x = case x of (p,q) -> fw p
fw p = let x = (p, error "urk") in <fbody>

This turns out to be very important in practice. Programmers sel-
dom write functions with wholly-unused arguments, but they fre-
quently write functions that use only part of their argument, and ig-
noring this point leads to large numbers of unused arguments being
passed around in the “optimised” program after the worker-wrapper
transformation. Absence analysis has therefore been part of GHC
since its earliest days (Peyton Jones and Partain 1994), but it has
never been formalised. In the framework of this paper, we give f a
usage signature like this:

f :: U (U ,A) ! •
The U (U ,A) indicates that the argument is a product type; that is,
a data type with just one constructor. The A (for “absent”) indicates
that f discards the second component of the product.

2

wurble1 :: !⇤U ! C!(C1(U)) ! •

We discuss related work in Section 8. Distinctive features of our
work are (a) the notion of call demands, (b) a full implementation
measured against a state of the art optimising compiler, and (c) the
combination of simplicity with worthwhile performance improve-
ments.

2. What is Cardinality Analysis?
Cardinality analysis answers three inter-related questions, in the
setting of a non-strict, pure functional language like Haskell:
• How many times is a particular, syntactic lambda-expression

called (Section 2.1)?
• Which components of a data structure are never evaluated; that

is, are absent (Section 2.3)?
• How many times is a particular, syntactic thunk evaluated (Sec-

tion 2.4)?

2.1 Call cardinality
We saw in the introduction an example where it is helpful to
know when a function calls its argument at most once. A lambda
that is called at most once is called a one-shot lambda, and they
are extremely common in functional programming: for example a
continuation is usually one-shot. So cardinality analysis can be a
big win when optimising continuation-heavy programs.
Nor is that all. As we saw in the Introduction, inlining under a one-
shot lambda (to transform f1 into f2) allows short-cut deforesta-
tion to fuse two otherwise-separate calls of map. But short-cut de-
forestation itself introduces many calls of of the function build:
build :: (forall b. (a -> b -> b) -> b -> b) -> [a]
build g = g (:) []

You can see that build calls its argument exactly once, and inlin-
ing ys in calls like (build (\cn. ...ys...)) turns out to be
crucial to making short-cut deforestation work in practice. Gill de-
votes a section of his thesis to elucidating this point (Gill 1996,
Chapter 4.3). Gill lacked an analysis for one-shot lambdas, so his
implementation (still extant in GHC today) relies on a gross hack:
he taught GHC’s optimiser to behave specially for build itself, and
a couple of other functions. No user-defined function will have this
good behaviour. Our analysis subsumes the hack, by providing an
analysis that deduces the correct one-shot information for build,
as well as many other functions.

2.2 Currying
In a higher order language with curried functions, we need to be
careful about the details. For example, consider
f3 a = wurble a (\x.let t = costly x in \y. t+y)

wurble1 a g = g 2 a + g 3 a
wurble2 a g = sum (map (g a) [1..1000])

If wurble was wurble1, then in f3 it would be best to inline t at
its use site, thus:
f4 a = wurble1 a (\x.\y. costly x + y)

The transformed f4 is much better than f3: it avoids allocating a
thunk for t, and avoids allocating a function closure for the \y.
But if f3 called wurble2 instead, such a transformation would be
disastrous. Why? Because wurble2 applies its argument g to one
argument a, and the function thus computed is applied to each of
1000 integers. In f3 we will compute (costly a) once, but f4
will compute it 1000 times, which is arbitrarily bad.
So our analysis of wurble2 must be able to report “wurble2’s
argument g is called1 once (applied to one argument), and the

1 We will always use “called” to mean “applied to one argument”.

result is called many times”. We formalise this by giving a usage

signature to wurble, like this:

wurble1 :: U ! C
!(C 1(U)) ! •

wurble2 :: U ! C
1(C!(U)) ! •

The notation C
!(C 1(U)) is a usage demand: it describes how a

(function) value is used. The demand type U ! C
!(C 1(U)) ! •

describes how a function uses its arguments, therefore it gives a
usage demand for each argument. (The “•” has no significance; we
are just used to seeing something after the final arrow!) Informally,
the C

1(d) means “this argument is called once (applied to one
argument), and the result is used with usage d”, whereas C

!(d)
means “this argument may be called many times, with each result
used with usage d”. The U means “is used in some unknown way
(or even not used at all)”. Note that wurble1’s second argument
usage is C

!(C 1(U)), not C
!(C!(U)); that is, in all cases the

result of applying g to one argument is then called only once.

2.3 Absence
Consider this function
f x = case x of (p,q) -> <cbody>

A strictness analyser can see that f is strict in x, and so can use
call-by-value. Moreover, rather than allocate a pair that is passed to
f, which immediately takes it apart, GHC uses a worker/wrapper
transformation to pass the pieces separately, thus:
f x = case x of (p,q) -> fw p q
fw p q = <cbody>

Now f (the “wrapper”) is small, and can be inlined at f’s call
sites, often eliminating the allocation of the pair; meanwhile fw
(the “worker”) does the actual work. Strictness analysis, and the
worker/wrapper transform to exploit its results, are hugely impor-
tant to generating efficient code for lazy programs (Peyton Jones
and Partain 1994; Peyton Jones and Santos 1998).
In general, f’s right-hand side often does not have a syntacti-

cally visible case expression. For example, what if f simply
called another function g that was strict in x? Fortunately the
worker/wrapper transform is easy to generalise. Suppose the right
hand side of f was just <fbody>. Then we would transform to
f x = case x of (p,q) -> fw p q
fw p q = let x = (p,q) in <fbody>

Now we hope that the binding for x will cancel with case expres-
sions in <fbody>, and indeed it usually proves to be so (Peyton
Jones and Santos 1998).
But what if <fbody> did not use q at all? Then it would be stupid
to pass q to fw. We would rather transform to:
f x = case x of (p,q) -> fw p
fw p = let x = (p, error "urk") in <fbody>

This turns out to be very important in practice. Programmers sel-
dom write functions with wholly-unused arguments, but they fre-
quently write functions that use only part of their argument, and ig-
noring this point leads to large numbers of unused arguments being
passed around in the “optimised” program after the worker-wrapper
transformation. Absence analysis has therefore been part of GHC
since its earliest days (Peyton Jones and Partain 1994), but it has
never been formalised. In the framework of this paper, we give f a
usage signature like this:

f :: U (U ,A) ! •
The U (U ,A) indicates that the argument is a product type; that is,
a data type with just one constructor. The A (for “absent”) indicates
that f discards the second component of the product.

2

wurble1 :: !⇤U ! C!(C1(U)) ! •

We discuss related work in Section 8. Distinctive features of our
work are (a) the notion of call demands, (b) a full implementation
measured against a state of the art optimising compiler, and (c) the
combination of simplicity with worthwhile performance improve-
ments.

2. What is Cardinality Analysis?
Cardinality analysis answers three inter-related questions, in the
setting of a non-strict, pure functional language like Haskell:
• How many times is a particular, syntactic lambda-expression

called (Section 2.1)?
• Which components of a data structure are never evaluated; that

is, are absent (Section 2.3)?
• How many times is a particular, syntactic thunk evaluated (Sec-

tion 2.4)?

2.1 Call cardinality
We saw in the introduction an example where it is helpful to
know when a function calls its argument at most once. A lambda
that is called at most once is called a one-shot lambda, and they
are extremely common in functional programming: for example a
continuation is usually one-shot. So cardinality analysis can be a
big win when optimising continuation-heavy programs.
Nor is that all. As we saw in the Introduction, inlining under a one-
shot lambda (to transform f1 into f2) allows short-cut deforesta-
tion to fuse two otherwise-separate calls of map. But short-cut de-
forestation itself introduces many calls of of the function build:
build :: (forall b. (a -> b -> b) -> b -> b) -> [a]
build g = g (:) []

You can see that build calls its argument exactly once, and inlin-
ing ys in calls like (build (\cn. ...ys...)) turns out to be
crucial to making short-cut deforestation work in practice. Gill de-
votes a section of his thesis to elucidating this point (Gill 1996,
Chapter 4.3). Gill lacked an analysis for one-shot lambdas, so his
implementation (still extant in GHC today) relies on a gross hack:
he taught GHC’s optimiser to behave specially for build itself, and
a couple of other functions. No user-defined function will have this
good behaviour. Our analysis subsumes the hack, by providing an
analysis that deduces the correct one-shot information for build,
as well as many other functions.

2.2 Currying
In a higher order language with curried functions, we need to be
careful about the details. For example, consider
f3 a = wurble a (\x.let t = costly x in \y. t+y)

wurble1 a g = g 2 a + g 3 a
wurble2 a g = sum (map (g a) [1..1000])

If wurble was wurble1, then in f3 it would be best to inline t at
its use site, thus:
f4 a = wurble1 a (\x.\y. costly x + y)

The transformed f4 is much better than f3: it avoids allocating a
thunk for t, and avoids allocating a function closure for the \y.
But if f3 called wurble2 instead, such a transformation would be
disastrous. Why? Because wurble2 applies its argument g to one
argument a, and the function thus computed is applied to each of
1000 integers. In f3 we will compute (costly a) once, but f4
will compute it 1000 times, which is arbitrarily bad.
So our analysis of wurble2 must be able to report “wurble2’s
argument g is called1 once (applied to one argument), and the

1 We will always use “called” to mean “applied to one argument”.

result is called many times”. We formalise this by giving a usage

signature to wurble, like this:

wurble1 :: U ! C
!(C 1(U)) ! •

wurble2 :: U ! C
1(C!(U)) ! •

The notation C
!(C 1(U)) is a usage demand: it describes how a

(function) value is used. The demand type U ! C
!(C 1(U)) ! •

describes how a function uses its arguments, therefore it gives a
usage demand for each argument. (The “•” has no significance; we
are just used to seeing something after the final arrow!) Informally,
the C

1(d) means “this argument is called once (applied to one
argument), and the result is used with usage d”, whereas C

!(d)
means “this argument may be called many times, with each result
used with usage d”. The U means “is used in some unknown way
(or even not used at all)”. Note that wurble1’s second argument
usage is C

!(C 1(U)), not C
!(C!(U)); that is, in all cases the

result of applying g to one argument is then called only once.

2.3 Absence
Consider this function
f x = case x of (p,q) -> <cbody>

A strictness analyser can see that f is strict in x, and so can use
call-by-value. Moreover, rather than allocate a pair that is passed to
f, which immediately takes it apart, GHC uses a worker/wrapper
transformation to pass the pieces separately, thus:
f x = case x of (p,q) -> fw p q
fw p q = <cbody>

Now f (the “wrapper”) is small, and can be inlined at f’s call
sites, often eliminating the allocation of the pair; meanwhile fw
(the “worker”) does the actual work. Strictness analysis, and the
worker/wrapper transform to exploit its results, are hugely impor-
tant to generating efficient code for lazy programs (Peyton Jones
and Partain 1994; Peyton Jones and Santos 1998).
In general, f’s right-hand side often does not have a syntacti-

cally visible case expression. For example, what if f simply
called another function g that was strict in x? Fortunately the
worker/wrapper transform is easy to generalise. Suppose the right
hand side of f was just <fbody>. Then we would transform to
f x = case x of (p,q) -> fw p q
fw p q = let x = (p,q) in <fbody>

Now we hope that the binding for x will cancel with case expres-
sions in <fbody>, and indeed it usually proves to be so (Peyton
Jones and Santos 1998).
But what if <fbody> did not use q at all? Then it would be stupid
to pass q to fw. We would rather transform to:
f x = case x of (p,q) -> fw p
fw p = let x = (p, error "urk") in <fbody>

This turns out to be very important in practice. Programmers sel-
dom write functions with wholly-unused arguments, but they fre-
quently write functions that use only part of their argument, and ig-
noring this point leads to large numbers of unused arguments being
passed around in the “optimised” program after the worker-wrapper
transformation. Absence analysis has therefore been part of GHC
since its earliest days (Peyton Jones and Partain 1994), but it has
never been formalised. In the framework of this paper, we give f a
usage signature like this:

f :: U (U ,A) ! •
The U (U ,A) indicates that the argument is a product type; that is,
a data type with just one constructor. The A (for “absent”) indicates
that f discards the second component of the product.

2

wurble2 :: !⇤U ! C1(C!(U)) ! •

We discuss related work in Section 8. Distinctive features of our
work are (a) the notion of call demands, (b) a full implementation
measured against a state of the art optimising compiler, and (c) the
combination of simplicity with worthwhile performance improve-
ments.

2. What is Cardinality Analysis?
Cardinality analysis answers three inter-related questions, in the
setting of a non-strict, pure functional language like Haskell:
• How many times is a particular, syntactic lambda-expression

called (Section 2.1)?
• Which components of a data structure are never evaluated; that

is, are absent (Section 2.3)?
• How many times is a particular, syntactic thunk evaluated (Sec-

tion 2.4)?

2.1 Call cardinality
We saw in the introduction an example where it is helpful to
know when a function calls its argument at most once. A lambda
that is called at most once is called a one-shot lambda, and they
are extremely common in functional programming: for example a
continuation is usually one-shot. So cardinality analysis can be a
big win when optimising continuation-heavy programs.
Nor is that all. As we saw in the Introduction, inlining under a one-
shot lambda (to transform f1 into f2) allows short-cut deforesta-
tion to fuse two otherwise-separate calls of map. But short-cut de-
forestation itself introduces many calls of of the function build:
build :: (forall b. (a -> b -> b) -> b -> b) -> [a]
build g = g (:) []

You can see that build calls its argument exactly once, and inlin-
ing ys in calls like (build (\cn. ...ys...)) turns out to be
crucial to making short-cut deforestation work in practice. Gill de-
votes a section of his thesis to elucidating this point (Gill 1996,
Chapter 4.3). Gill lacked an analysis for one-shot lambdas, so his
implementation (still extant in GHC today) relies on a gross hack:
he taught GHC’s optimiser to behave specially for build itself, and
a couple of other functions. No user-defined function will have this
good behaviour. Our analysis subsumes the hack, by providing an
analysis that deduces the correct one-shot information for build,
as well as many other functions.

2.2 Currying
In a higher order language with curried functions, we need to be
careful about the details. For example, consider
f3 a = wurble a (\x.let t = costly x in \y. t+y)

wurble1 a g = g 2 a + g 3 a
wurble2 a g = sum (map (g a) [1..1000])

If wurble was wurble1, then in f3 it would be best to inline t at
its use site, thus:
f4 a = wurble1 a (\x.\y. costly x + y)

The transformed f4 is much better than f3: it avoids allocating a
thunk for t, and avoids allocating a function closure for the \y.
But if f3 called wurble2 instead, such a transformation would be
disastrous. Why? Because wurble2 applies its argument g to one
argument a, and the function thus computed is applied to each of
1000 integers. In f3 we will compute (costly a) once, but f4
will compute it 1000 times, which is arbitrarily bad.
So our analysis of wurble2 must be able to report “wurble2’s
argument g is called1 once (applied to one argument), and the

1 We will always use “called” to mean “applied to one argument”.

result is called many times”. We formalise this by giving a usage

signature to wurble, like this:

wurble1 :: U ! C
!(C 1(U)) ! •

wurble2 :: U ! C
1(C!(U)) ! •

The notation C
!(C 1(U)) is a usage demand: it describes how a

(function) value is used. The demand type U ! C
!(C 1(U)) ! •

describes how a function uses its arguments, therefore it gives a
usage demand for each argument. (The “•” has no significance; we
are just used to seeing something after the final arrow!) Informally,
the C

1(d) means “this argument is called once (applied to one
argument), and the result is used with usage d”, whereas C

!(d)
means “this argument may be called many times, with each result
used with usage d”. The U means “is used in some unknown way
(or even not used at all)”. Note that wurble1’s second argument
usage is C

!(C 1(U)), not C
!(C!(U)); that is, in all cases the

result of applying g to one argument is then called only once.

2.3 Absence
Consider this function
f x = case x of (p,q) -> <cbody>

A strictness analyser can see that f is strict in x, and so can use
call-by-value. Moreover, rather than allocate a pair that is passed to
f, which immediately takes it apart, GHC uses a worker/wrapper
transformation to pass the pieces separately, thus:
f x = case x of (p,q) -> fw p q
fw p q = <cbody>

Now f (the “wrapper”) is small, and can be inlined at f’s call
sites, often eliminating the allocation of the pair; meanwhile fw
(the “worker”) does the actual work. Strictness analysis, and the
worker/wrapper transform to exploit its results, are hugely impor-
tant to generating efficient code for lazy programs (Peyton Jones
and Partain 1994; Peyton Jones and Santos 1998).
In general, f’s right-hand side often does not have a syntacti-

cally visible case expression. For example, what if f simply
called another function g that was strict in x? Fortunately the
worker/wrapper transform is easy to generalise. Suppose the right
hand side of f was just <fbody>. Then we would transform to
f x = case x of (p,q) -> fw p q
fw p q = let x = (p,q) in <fbody>

Now we hope that the binding for x will cancel with case expres-
sions in <fbody>, and indeed it usually proves to be so (Peyton
Jones and Santos 1998).
But what if <fbody> did not use q at all? Then it would be stupid
to pass q to fw. We would rather transform to:
f x = case x of (p,q) -> fw p
fw p = let x = (p, error "urk") in <fbody>

This turns out to be very important in practice. Programmers sel-
dom write functions with wholly-unused arguments, but they fre-
quently write functions that use only part of their argument, and ig-
noring this point leads to large numbers of unused arguments being
passed around in the “optimised” program after the worker-wrapper
transformation. Absence analysis has therefore been part of GHC
since its earliest days (Peyton Jones and Partain 1994), but it has
never been formalised. In the framework of this paper, we give f a
usage signature like this:

f :: U (U ,A) ! •
The U (U ,A) indicates that the argument is a product type; that is,
a data type with just one constructor. The A (for “absent”) indicates
that f discards the second component of the product.

2

wurble2 :: !⇤U ! C1(C!(U)) ! •

f x = case x of (p, q) -> p + 1

f :: 1⇤U(1⇤U,A) ! •

Usage type
depends on a usage context!

(result demand determines argument demands)

Two Types
of Modular Program Analyses

•Forward analysis

• “Run” the program with abstract input and infer the abstract result;

• Examples: sign analysis, interval analysis, type checking/inference.

•Backwards analysis

• From the expected abstract result of the program infer the abstract
values of its inputs.

Backwards Analysis
Infers demand type basing on a context

µ(d†) = m

µ(A) = 0 µ(n⇤d) = n

d
†
1 & d

†
2 = d

†
3 d

†
1 t d

†
2 = d

†
3

A& d
† = d

†

d
† &A = d

†

n1⇤d1 &n2⇤d2 = !⇤(d1 & d2)

A t d
† = d

†

d
† tA = d

†

n1⇤d1 t n2⇤d2 = (n1 t n2)⇤(d1 t d2)

d1 & d2 = d3 d1 t d2 = d3

d &U = U

U & d = U

d &HU = d

HU & d = d

C
n1 (d1)&C

n2 (d2) = C
!(d1 t d2)

U (d†
1 , d

†
2)&U (d†

3 , d
†
4) = U (d†

1 & d
†
3 , d

†
2 & d

†
4)

d tU = U

U t d = U

d tHU = d

HU t d = d

C
n1 (d1) t C

n2 (d2) = C
n1tn2 (d1 t d2)

U (d†
1 , d

†
2) tU (d†

3 , d
†
4) = U (d†

1 t d
†
3 , d

†
2 t d

†
4)

'1 &'2 = '3 '1 t '2 = '3

'1 &'2 = {(x :d†
1 & d

†
2) | 'i (x) = d

†
i }

'1 t '2 = {(x :d†
1 t d

†
2) | 'i (x) = d

†
i }

⌧1 t ⌧2 = ⌧3

(d†
1 ! ⌧1) t (d†

1 ! ⌧2) = (d†
1 t d

†
2) ! (⌧1 t ⌧2)

⌧ t • = •

h⌧1 ; '1i t h⌧2 ; '2i = h⌧3 ; '3i

h⌧1 ; '1i t h⌧2 ; '2i = h⌧1 t ⌧2 ; '1 t '2i

n⇤d†
1 = d

†
2 n⇤⌧1 = ⌧2 n⇤'1 = '2

1⇤d† = d
†

!⇤d† = d
† & d

†

n⇤• = •
n⇤(d† ! ⌧) = (n⇤d†) ! (n⇤⌧)

n⇤' = {x : n⇤'(x) | x 2 dom(')}

n1 t n2 = n3

1 t 1 = 1 ! t n = ! n t ! = !

a v b

a v b , (a t b) = b

Figure 2: Demands and demand operations

P Ì e # d) h⌧ ; 'i e

(x : ⇢) 2 P h⌧ ; 'i = transform(⇢, d)
VARDN

P Ì x # d) h⌧ ; '&(x :1⇤d)i x

x /2 dom(P)
VARUP

P Ì x # d) h• ; (x :1⇤d)i x

P Ì e # de) h⌧ ; 'i e

LAM
P Ì�x.e # C

n (de)) h'(x) ! ⌧ ; n⇤('\x)i �n
x.e

P Ì�x.e # C
!(U)) h⌧ ; 'i e

0

LAMU
P Ì�x.e # U) h⌧ ; 'i e

0

LAMHU
P Ì�x.e # HU) h⌧ ; ✏i �1

x.e

P Ì e1 # C
1(d)) hd†

2 !⌧r ; '1i e1 P Ì⇤y # d
†
2) '2

APPA
P Ì e1 y # d) h⌧r ; '1 &'2i e1 y

P Ì e1 # C
1(d)) h• ; '1i e1 P Ì⇤y # !⇤U) '2

APPB
P Ì e1 y # d) h• ; '1 &'2i e1 y

P Ì⇤xi # d
†
i) 'i i 2 1, 2

PAIR
P Ì (x1, x2) # U (d†

1 , d
†
2)) h• ; '1 &'2i (x1, x2)

P Ì (x1, x2) # U (!⇤U ,!⇤U)) h• ; 'i e

PAIRU
P Ì (x1, x2) # U) h• ; 'i e

PAIRHU
P Ì (x1, x2) # HU) h• ; ✏i (x1, x2)

P Ì er # d) h⌧ ; 'r i er

P Ì es # U ('r (x),'r (y))) h ; 'si es CASE
P Ì case es of (x , y) ! er # d) h⌧ ; 'r\x ,y &'si

 case es of (x , y) ! er

P Ì⇤x # d
†) '

ABS
P Ì⇤x # A) ✏

P Ì x # d) h⌧ ; 'i x

MULTI
P Ì⇤x # n⇤d) n⇤'

Figure 3: Algorithmic cardinality analysis specification, part 1.

and metatheory are modulo-⌘ (checking that all our definitions do
respect ⌘ is routine).

3.2 Usage analysis

The analysis itself is shown in Figures 3 and 4. The main judgement
form is written thus

P Ì e # d) h⌧ ; 'i e
0

which should be read thus: in signature environment P , and under

usage demand d , the term e places demands h⌧ ; 'i on its compo-

nents, and elaborates to an annotated term e
0. The syntax of each

of these components is given in Figure 1, and their roles in the
judgement are the following:

4

µ(d†) = m

µ(A) = 0 µ(n⇤d) = n

d
†
1 & d

†
2 = d

†
3 d

†
1 t d

†
2 = d

†
3

A& d
† = d

†

d
† &A = d

†

n1⇤d1 &n2⇤d2 = !⇤(d1 & d2)

A t d
† = d

†

d
† tA = d

†

n1⇤d1 t n2⇤d2 = (n1 t n2)⇤(d1 t d2)

d1 & d2 = d3 d1 t d2 = d3

d &U = U

U & d = U

d &HU = d

HU & d = d

C
n1 (d1)&C

n2 (d2) = C
!(d1 t d2)

U (d†
1 , d

†
2)&U (d†

3 , d
†
4) = U (d†

1 & d
†
3 , d

†
2 & d

†
4)

d tU = U

U t d = U

d tHU = d

HU t d = d

C
n1 (d1) t C

n2 (d2) = C
n1tn2 (d1 t d2)

U (d†
1 , d

†
2) tU (d†

3 , d
†
4) = U (d†

1 t d
†
3 , d

†
2 t d

†
4)

'1 &'2 = '3 '1 t '2 = '3

'1 &'2 = {(x :d†
1 & d

†
2) | 'i (x) = d

†
i }

'1 t '2 = {(x :d†
1 t d

†
2) | 'i (x) = d

†
i }

⌧1 t ⌧2 = ⌧3

(d†
1 ! ⌧1) t (d†

1 ! ⌧2) = (d†
1 t d

†
2) ! (⌧1 t ⌧2)

⌧ t • = •

h⌧1 ; '1i t h⌧2 ; '2i = h⌧3 ; '3i

h⌧1 ; '1i t h⌧2 ; '2i = h⌧1 t ⌧2 ; '1 t '2i

n⇤d†
1 = d

†
2 n⇤⌧1 = ⌧2 n⇤'1 = '2

1⇤d† = d
†

!⇤d† = d
† & d

†

n⇤• = •
n⇤(d† ! ⌧) = (n⇤d†) ! (n⇤⌧)

n⇤' = {x : n⇤'(x) | x 2 dom(')}

n1 t n2 = n3

1 t 1 = 1 ! t n = ! n t ! = !

a v b

a v b , (a t b) = b

Figure 2: Demands and demand operations

P Ì e # d) h⌧ ; 'i e

(x : ⇢) 2 P h⌧ ; 'i = transform(⇢, d)
VARDN

P Ì x # d) h⌧ ; '&(x :1⇤d)i x

x /2 dom(P)
VARUP

P Ì x # d) h• ; (x :1⇤d)i x

P Ì e # de) h⌧ ; 'i e

LAM
P Ì�x.e # C

n (de)) h'(x) ! ⌧ ; n⇤('\x)i �n
x.e

P Ì�x.e # C
!(U)) h⌧ ; 'i e

0

LAMU
P Ì�x.e # U) h⌧ ; 'i e

0

LAMHU
P Ì�x.e # HU) h⌧ ; ✏i �1

x.e

P Ì e1 # C
1(d)) hd†

2 !⌧r ; '1i e1 P Ì⇤y # d
†
2) '2

APPA
P Ì e1 y # d) h⌧r ; '1 &'2i e1 y

P Ì e1 # C
1(d)) h• ; '1i e1 P Ì⇤y # !⇤U) '2

APPB
P Ì e1 y # d) h• ; '1 &'2i e1 y

P Ì⇤xi # d
†
i) 'i i 2 1, 2

PAIR
P Ì (x1, x2) # U (d†

1 , d
†
2)) h• ; '1 &'2i (x1, x2)

P Ì (x1, x2) # U (!⇤U ,!⇤U)) h• ; 'i e

PAIRU
P Ì (x1, x2) # U) h• ; 'i e

PAIRHU
P Ì (x1, x2) # HU) h• ; ✏i (x1, x2)

P Ì er # d) h⌧ ; 'r i er

P Ì es # U ('r (x),'r (y))) h ; 'si es CASE
P Ì case es of (x , y) ! er # d) h⌧ ; 'r\x ,y &'si

 case es of (x , y) ! er

P Ì⇤x # d
†) '

ABS
P Ì⇤x # A) ✏

P Ì x # d) h⌧ ; 'i x

MULTI
P Ì⇤x # n⇤d) n⇤'

Figure 3: Algorithmic cardinality analysis specification, part 1.

and metatheory are modulo-⌘ (checking that all our definitions do
respect ⌘ is routine).

3.2 Usage analysis

The analysis itself is shown in Figures 3 and 4. The main judgement
form is written thus

P Ì e # d) h⌧ ; 'i e
0

which should be read thus: in signature environment P , and under

usage demand d , the term e places demands h⌧ ; 'i on its compo-

nents, and elaborates to an annotated term e
0. The syntax of each

of these components is given in Figure 1, and their roles in the
judgement are the following:

4

• P - signature environment, maps some of free variables of e to their
demand signatures (i.e., keeps some contextual information)

• d - usage demand, describes the degree to which e is evaluated

• τ - demand type, usages that e places on its arguments

• φ - fv-usage, usages that e places on its free variables

• The signature environment P maps some of free variables of
e to their usage signatures, ⇢ (Section 3.5). Any free variables
outside the domain of P have an uninformative signature.

• The usage demand, d , describes the degree to which e is eval-
uated, including how many times its sub-components are eval-
uated or called.

• Using P , the judgement transforms the incoming demand d into
the demands h⌧ ; 'i that e places on its arguments and free

variables respectively:
The usage that e places on its argument is given by ⌧ , which
gives a demand d

† for each argument.

The usage that e places on its free variables is given by its
free-variable usage (fv-usage), ', which is simply a finite
mapping from variables to usage demands.

• We will discuss the elaborated expressions e0 in Section 3.7.

For example, consider the expression

e = �x . case x of (p, q) ! (p, f True)

Suppose we place demand C
1(U) on e , so that e is called, just

once. What demand does it then place on its arguments and free
variables?

✏ Ì e # C
1(U)) h1⇤U (!⇤U ,A) ! • ; {f 7! 1⇤C 1(U)}i

That is, e will use its argument once, its argument’s first component
perhaps many times, but will ignore its arguments second compo-
nent (the A in the usage type). Moreover e will call f just once.

In short, we think of the analysis as describing a demand trans-

former, transforming a demand on the result of e into demands on
its arguments and free variables.

3.3 Pairs and case expressions
With these definitions in mind, we can look at some of the analysis
rules in Figure 3. Rule PAIR explains how to analyse a pair under
a demand U (d†

1 , d
†
2). We simply analyse the two components,

under d†
1 or d†

2 respectively, and combine the results with “&”. The
auxiliary judgement Ì⇤ (Figure 3) deals with the multiplicity of
the argument demands d†

i .

The “&” operator, pronounced “both”, is defined in Figure 2, and
combines the free-variable usages '1 and '2. For the most part the
definition is straightforward, but there is a very important wrinkle
for call demands:

C
n1(d1)&C

n2(d2) = C
!(d1 t d2)

The “!” part is easy, since n1 and n2 are both at least 1. But note
the switch from & to the least upper bound t! To see why, consider
what demand this expression places on f:

f 1 2 + f 3 4

Each call gives a usage demand for f of 1⇤C 1(C 1(U)), and if we
use & to combine that demand with itself we get !⇤C!(C 1(U)).
The inner “1” is a consequence of the switch to t, and rightly
expresses the fact that no partial application of f is called more
than once.

The other rules for pairs PAIRU, PAIRHU, and case expressions
CASE should now be readily comprehensible ('r\x ,y stands for
the removal of {x , y} from the domain of 'r .).

3.4 Lambda and application
Rule LAM for lambdas expects the incoming demand to be a call
demand C

n(de). Then it analyses the body e with demand de to
give h⌧ ; 'i. If n = 1 the lambda is called at most once, so
we can return h⌧ ; 'i; but if n = ! the lambda may be called

more than once, and each call will place a new demand on the
free variables. The n ⇤' operation on the bottom line accounts for
this multiplicity, and is defined in Figure 2. Rule LAMU handles
an incoming demand of U by treating it just like C

!(U), while
LAMHU deals with the head-used demand HU , where the lambda
is not even called so we do not need to analyse the body, and e

is obtained from e by adding arbitrary annotations. Similarly the
return type ⌧ can be any type, since the �-abstraction is not going
to be applied, but is only head-used. Dually, given an application
(e y), rule APPA analyses e with demand C

1(d), reflecting that
e is here called once. This returns the demand hd†

2 ! ⌧2 ; '1i
on the context. Then we can analyse the argument under demand
d
†
2 , using Ì⇤, yielding '2; and combine '1 and '2. Rule APPB

applies when analysing e1 yields the less-informative usage type •.

3.5 Usage signatures
Suppose we have the term

let f = \x.\y. x True in f p q

We would like to determine the correct demands on p and q, namely
1⇤C 1(U) and A respectively. The gold standard would be to analyse
f’s right-hand side at every call site; that is, to behave as if f were
inlined at each call site. But that is not very modular; with deeply
nested function definitions, it can be exponentially expensive to
analyse each function body afresh at each call site; and it does not
work at all for recursive functions. Instead, we want to analyse f,
summarise its behaviour, and then use that summary at each call
site. This summary is called f’s usage signature. Remember that
the main judgement describes how a term transforms a demand for
the value into demands on its context. So a usage signature must be
a (conservative approximation of this) demand transformer.
There are many ways in which one might approximate f’s demand
transformer, but rule LETDN (Figure 4) uses a particularly simple
one:
• Look at f’s right hand side �y1 . . .�yk. e1, where e1 is not a

lambda-expression.
• Analyse e1 in demand U , giving h⌧1 ; '1i.
• Record the triple hk ;'(y) ! ⌧1 ;'1\yi as f’s usage signature

in the environment P when analysing the body of the let.
Now, at a call site of f, rule VARDN calls transform(⇢, d) to use
the recorded usage signature ⇢ to transform the demand d for this
occurrence of f.
What does transform(hk ; ⌧ ; 'i, d) do (Figure 1)? If the demand
d on f is stronger than C

1(. . .C 1(U)), where the call demands
are nested k deep, we can safely unleash h⌧ ; 'i at the call site. If
not, we simply treat the function as if it were called many times, by
unleashing h!⇤⌧ ; !⇤'i, multiplying both the demand type ⌧ and
the usage environment ' (Figure 2). Rule LETDNABS handles the
case when the variable is not used in the body.

3.6 Thunks
The LETDN rule unleashes (an approximation to) the demands of
the right-hand side at each usage site. This is good if the right hand
side is a lambda, but not good otherwise, for two reasons. Consider
let x = y + 1 in x + x

How many times is y demanded? Just once! The thunk x is de-
manded twice, but x’s thunk is memoised, so the y+1 is evaluated
only once. So it is wrong to unleash a demand on y at each of x’s
occurrence sites. Contrast the situation where x is a function
let x = \v. y + v in x 42 + x 239

Here y really is demanded twice, and LETDN does that. Another
reason that LETDN would be sub-optimal for thunks is shown here:

5

• The signature environment P maps some of free variables of
e to their usage signatures, ⇢ (Section 3.5). Any free variables
outside the domain of P have an uninformative signature.

• The usage demand, d , describes the degree to which e is eval-
uated, including how many times its sub-components are eval-
uated or called.

• Using P , the judgement transforms the incoming demand d into
the demands h⌧ ; 'i that e places on its arguments and free

variables respectively:
The usage that e places on its argument is given by ⌧ , which
gives a demand d

† for each argument.

The usage that e places on its free variables is given by its
free-variable usage (fv-usage), ', which is simply a finite
mapping from variables to usage demands.

• We will discuss the elaborated expressions e0 in Section 3.7.

For example, consider the expression

e = �x . case x of (p, q) ! (p, f True)

Suppose we place demand C
1(U) on e , so that e is called, just

once. What demand does it then place on its arguments and free
variables?

✏ Ì e # C
1(U)) h1⇤U (!⇤U ,A) ! • ; {f 7! 1⇤C 1(U)}i

That is, e will use its argument once, its argument’s first component
perhaps many times, but will ignore its arguments second compo-
nent (the A in the usage type). Moreover e will call f just once.

In short, we think of the analysis as describing a demand trans-

former, transforming a demand on the result of e into demands on
its arguments and free variables.

3.3 Pairs and case expressions
With these definitions in mind, we can look at some of the analysis
rules in Figure 3. Rule PAIR explains how to analyse a pair under
a demand U (d†

1 , d
†
2). We simply analyse the two components,

under d†
1 or d†

2 respectively, and combine the results with “&”. The
auxiliary judgement Ì⇤ (Figure 3) deals with the multiplicity of
the argument demands d†

i .

The “&” operator, pronounced “both”, is defined in Figure 2, and
combines the free-variable usages '1 and '2. For the most part the
definition is straightforward, but there is a very important wrinkle
for call demands:

C
n1(d1)&C

n2(d2) = C
!(d1 t d2)

The “!” part is easy, since n1 and n2 are both at least 1. But note
the switch from & to the least upper bound t! To see why, consider
what demand this expression places on f:

f 1 2 + f 3 4

Each call gives a usage demand for f of 1⇤C 1(C 1(U)), and if we
use & to combine that demand with itself we get !⇤C!(C 1(U)).
The inner “1” is a consequence of the switch to t, and rightly
expresses the fact that no partial application of f is called more
than once.

The other rules for pairs PAIRU, PAIRHU, and case expressions
CASE should now be readily comprehensible ('r\x ,y stands for
the removal of {x , y} from the domain of 'r .).

3.4 Lambda and application
Rule LAM for lambdas expects the incoming demand to be a call
demand C

n(de). Then it analyses the body e with demand de to
give h⌧ ; 'i. If n = 1 the lambda is called at most once, so
we can return h⌧ ; 'i; but if n = ! the lambda may be called

more than once, and each call will place a new demand on the
free variables. The n ⇤' operation on the bottom line accounts for
this multiplicity, and is defined in Figure 2. Rule LAMU handles
an incoming demand of U by treating it just like C

!(U), while
LAMHU deals with the head-used demand HU , where the lambda
is not even called so we do not need to analyse the body, and e

is obtained from e by adding arbitrary annotations. Similarly the
return type ⌧ can be any type, since the �-abstraction is not going
to be applied, but is only head-used. Dually, given an application
(e y), rule APPA analyses e with demand C

1(d), reflecting that
e is here called once. This returns the demand hd†

2 ! ⌧2 ; '1i
on the context. Then we can analyse the argument under demand
d
†
2 , using Ì⇤, yielding '2; and combine '1 and '2. Rule APPB

applies when analysing e1 yields the less-informative usage type •.

3.5 Usage signatures
Suppose we have the term

let f = \x.\y. x True in f p q

We would like to determine the correct demands on p and q, namely
1⇤C 1(U) and A respectively. The gold standard would be to analyse
f’s right-hand side at every call site; that is, to behave as if f were
inlined at each call site. But that is not very modular; with deeply
nested function definitions, it can be exponentially expensive to
analyse each function body afresh at each call site; and it does not
work at all for recursive functions. Instead, we want to analyse f,
summarise its behaviour, and then use that summary at each call
site. This summary is called f’s usage signature. Remember that
the main judgement describes how a term transforms a demand for
the value into demands on its context. So a usage signature must be
a (conservative approximation of this) demand transformer.
There are many ways in which one might approximate f’s demand
transformer, but rule LETDN (Figure 4) uses a particularly simple
one:
• Look at f’s right hand side �y1 . . .�yk. e1, where e1 is not a

lambda-expression.
• Analyse e1 in demand U , giving h⌧1 ; '1i.
• Record the triple hk ;'(y) ! ⌧1 ;'1\yi as f’s usage signature

in the environment P when analysing the body of the let.
Now, at a call site of f, rule VARDN calls transform(⇢, d) to use
the recorded usage signature ⇢ to transform the demand d for this
occurrence of f.
What does transform(hk ; ⌧ ; 'i, d) do (Figure 1)? If the demand
d on f is stronger than C

1(. . .C 1(U)), where the call demands
are nested k deep, we can safely unleash h⌧ ; 'i at the call site. If
not, we simply treat the function as if it were called many times, by
unleashing h!⇤⌧ ; !⇤'i, multiplying both the demand type ⌧ and
the usage environment ' (Figure 2). Rule LETDNABS handles the
case when the variable is not used in the body.

3.6 Thunks
The LETDN rule unleashes (an approximation to) the demands of
the right-hand side at each usage site. This is good if the right hand
side is a lambda, but not good otherwise, for two reasons. Consider
let x = y + 1 in x + x

How many times is y demanded? Just once! The thunk x is de-
manded twice, but x’s thunk is memoised, so the y+1 is evaluated
only once. So it is wrong to unleash a demand on y at each of x’s
occurrence sites. Contrast the situation where x is a function
let x = \v. y + v in x 42 + x 239

Here y really is demanded twice, and LETDN does that. Another
reason that LETDN would be sub-optimal for thunks is shown here:

5

• The signature environment P maps some of free variables of
e to their usage signatures, ⇢ (Section 3.5). Any free variables
outside the domain of P have an uninformative signature.

• The usage demand, d , describes the degree to which e is eval-
uated, including how many times its sub-components are eval-
uated or called.

• Using P , the judgement transforms the incoming demand d into
the demands h⌧ ; 'i that e places on its arguments and free

variables respectively:
The usage that e places on its argument is given by ⌧ , which
gives a demand d

† for each argument.

The usage that e places on its free variables is given by its
free-variable usage (fv-usage), ', which is simply a finite
mapping from variables to usage demands.

• We will discuss the elaborated expressions e0 in Section 3.7.

For example, consider the expression

e = �x . case x of (p, q) ! (p, f True)

Suppose we place demand C
1(U) on e , so that e is called, just

once. What demand does it then place on its arguments and free
variables?

✏ Ì e # C
1(U)) h1⇤U (!⇤U ,A) ! • ; {f 7! 1⇤C 1(U)}i

That is, e will use its argument once, its argument’s first component
perhaps many times, but will ignore its arguments second compo-
nent (the A in the usage type). Moreover e will call f just once.

In short, we think of the analysis as describing a demand trans-

former, transforming a demand on the result of e into demands on
its arguments and free variables.

3.3 Pairs and case expressions
With these definitions in mind, we can look at some of the analysis
rules in Figure 3. Rule PAIR explains how to analyse a pair under
a demand U (d†

1 , d
†
2). We simply analyse the two components,

under d†
1 or d†

2 respectively, and combine the results with “&”. The
auxiliary judgement Ì⇤ (Figure 3) deals with the multiplicity of
the argument demands d†

i .

The “&” operator, pronounced “both”, is defined in Figure 2, and
combines the free-variable usages '1 and '2. For the most part the
definition is straightforward, but there is a very important wrinkle
for call demands:

C
n1(d1)&C

n2(d2) = C
!(d1 t d2)

The “!” part is easy, since n1 and n2 are both at least 1. But note
the switch from & to the least upper bound t! To see why, consider
what demand this expression places on f:

f 1 2 + f 3 4

Each call gives a usage demand for f of 1⇤C 1(C 1(U)), and if we
use & to combine that demand with itself we get !⇤C!(C 1(U)).
The inner “1” is a consequence of the switch to t, and rightly
expresses the fact that no partial application of f is called more
than once.

The other rules for pairs PAIRU, PAIRHU, and case expressions
CASE should now be readily comprehensible ('r\x ,y stands for
the removal of {x , y} from the domain of 'r .).

3.4 Lambda and application
Rule LAM for lambdas expects the incoming demand to be a call
demand C

n(de). Then it analyses the body e with demand de to
give h⌧ ; 'i. If n = 1 the lambda is called at most once, so
we can return h⌧ ; 'i; but if n = ! the lambda may be called

more than once, and each call will place a new demand on the
free variables. The n ⇤' operation on the bottom line accounts for
this multiplicity, and is defined in Figure 2. Rule LAMU handles
an incoming demand of U by treating it just like C

!(U), while
LAMHU deals with the head-used demand HU , where the lambda
is not even called so we do not need to analyse the body, and e

is obtained from e by adding arbitrary annotations. Similarly the
return type ⌧ can be any type, since the �-abstraction is not going
to be applied, but is only head-used. Dually, given an application
(e y), rule APPA analyses e with demand C

1(d), reflecting that
e is here called once. This returns the demand hd†

2 ! ⌧2 ; '1i
on the context. Then we can analyse the argument under demand
d
†
2 , using Ì⇤, yielding '2; and combine '1 and '2. Rule APPB

applies when analysing e1 yields the less-informative usage type •.

3.5 Usage signatures
Suppose we have the term

let f = \x.\y. x True in f p q

We would like to determine the correct demands on p and q, namely
1⇤C 1(U) and A respectively. The gold standard would be to analyse
f’s right-hand side at every call site; that is, to behave as if f were
inlined at each call site. But that is not very modular; with deeply
nested function definitions, it can be exponentially expensive to
analyse each function body afresh at each call site; and it does not
work at all for recursive functions. Instead, we want to analyse f,
summarise its behaviour, and then use that summary at each call
site. This summary is called f’s usage signature. Remember that
the main judgement describes how a term transforms a demand for
the value into demands on its context. So a usage signature must be
a (conservative approximation of this) demand transformer.
There are many ways in which one might approximate f’s demand
transformer, but rule LETDN (Figure 4) uses a particularly simple
one:
• Look at f’s right hand side �y1 . . .�yk. e1, where e1 is not a

lambda-expression.
• Analyse e1 in demand U , giving h⌧1 ; '1i.
• Record the triple hk ;'(y) ! ⌧1 ;'1\yi as f’s usage signature

in the environment P when analysing the body of the let.
Now, at a call site of f, rule VARDN calls transform(⇢, d) to use
the recorded usage signature ⇢ to transform the demand d for this
occurrence of f.
What does transform(hk ; ⌧ ; 'i, d) do (Figure 1)? If the demand
d on f is stronger than C

1(. . .C 1(U)), where the call demands
are nested k deep, we can safely unleash h⌧ ; 'i at the call site. If
not, we simply treat the function as if it were called many times, by
unleashing h!⇤⌧ ; !⇤'i, multiplying both the demand type ⌧ and
the usage environment ' (Figure 2). Rule LETDNABS handles the
case when the variable is not used in the body.

3.6 Thunks
The LETDN rule unleashes (an approximation to) the demands of
the right-hand side at each usage site. This is good if the right hand
side is a lambda, but not good otherwise, for two reasons. Consider
let x = y + 1 in x + x

How many times is y demanded? Just once! The thunk x is de-
manded twice, but x’s thunk is memoised, so the y+1 is evaluated
only once. So it is wrong to unleash a demand on y at each of x’s
occurrence sites. Contrast the situation where x is a function
let x = \v. y + v in x 42 + x 239

Here y really is demanded twice, and LETDN does that. Another
reason that LETDN would be sub-optimal for thunks is shown here:

5

• The signature environment P maps some of free variables of
e to their usage signatures, ⇢ (Section 3.5). Any free variables
outside the domain of P have an uninformative signature.

• The usage demand, d , describes the degree to which e is eval-
uated, including how many times its sub-components are eval-
uated or called.

• Using P , the judgement transforms the incoming demand d into
the demands h⌧ ; 'i that e places on its arguments and free

variables respectively:
The usage that e places on its argument is given by ⌧ , which
gives a demand d

† for each argument.

The usage that e places on its free variables is given by its
free-variable usage (fv-usage), ', which is simply a finite
mapping from variables to usage demands.

• We will discuss the elaborated expressions e0 in Section 3.7.

For example, consider the expression

e = �x . case x of (p, q) ! (p, f True)

Suppose we place demand C
1(U) on e , so that e is called, just

once. What demand does it then place on its arguments and free
variables?

✏ Ì e # C
1(U)) h1⇤U (!⇤U ,A) ! • ; {f 7! 1⇤C 1(U)}i

That is, e will use its argument once, its argument’s first component
perhaps many times, but will ignore its arguments second compo-
nent (the A in the usage type). Moreover e will call f just once.

In short, we think of the analysis as describing a demand trans-

former, transforming a demand on the result of e into demands on
its arguments and free variables.

3.3 Pairs and case expressions
With these definitions in mind, we can look at some of the analysis
rules in Figure 3. Rule PAIR explains how to analyse a pair under
a demand U (d†

1 , d
†
2). We simply analyse the two components,

under d†
1 or d†

2 respectively, and combine the results with “&”. The
auxiliary judgement Ì⇤ (Figure 3) deals with the multiplicity of
the argument demands d†

i .

The “&” operator, pronounced “both”, is defined in Figure 2, and
combines the free-variable usages '1 and '2. For the most part the
definition is straightforward, but there is a very important wrinkle
for call demands:

C
n1(d1)&C

n2(d2) = C
!(d1 t d2)

The “!” part is easy, since n1 and n2 are both at least 1. But note
the switch from & to the least upper bound t! To see why, consider
what demand this expression places on f:

f 1 2 + f 3 4

Each call gives a usage demand for f of 1⇤C 1(C 1(U)), and if we
use & to combine that demand with itself we get !⇤C!(C 1(U)).
The inner “1” is a consequence of the switch to t, and rightly
expresses the fact that no partial application of f is called more
than once.

The other rules for pairs PAIRU, PAIRHU, and case expressions
CASE should now be readily comprehensible ('r\x ,y stands for
the removal of {x , y} from the domain of 'r .).

3.4 Lambda and application
Rule LAM for lambdas expects the incoming demand to be a call
demand C

n(de). Then it analyses the body e with demand de to
give h⌧ ; 'i. If n = 1 the lambda is called at most once, so
we can return h⌧ ; 'i; but if n = ! the lambda may be called

more than once, and each call will place a new demand on the
free variables. The n ⇤' operation on the bottom line accounts for
this multiplicity, and is defined in Figure 2. Rule LAMU handles
an incoming demand of U by treating it just like C

!(U), while
LAMHU deals with the head-used demand HU , where the lambda
is not even called so we do not need to analyse the body, and e

is obtained from e by adding arbitrary annotations. Similarly the
return type ⌧ can be any type, since the �-abstraction is not going
to be applied, but is only head-used. Dually, given an application
(e y), rule APPA analyses e with demand C

1(d), reflecting that
e is here called once. This returns the demand hd†

2 ! ⌧2 ; '1i
on the context. Then we can analyse the argument under demand
d
†
2 , using Ì⇤, yielding '2; and combine '1 and '2. Rule APPB

applies when analysing e1 yields the less-informative usage type •.

3.5 Usage signatures
Suppose we have the term

let f = \x.\y. x True in f p q

We would like to determine the correct demands on p and q, namely
1⇤C 1(U) and A respectively. The gold standard would be to analyse
f’s right-hand side at every call site; that is, to behave as if f were
inlined at each call site. But that is not very modular; with deeply
nested function definitions, it can be exponentially expensive to
analyse each function body afresh at each call site; and it does not
work at all for recursive functions. Instead, we want to analyse f,
summarise its behaviour, and then use that summary at each call
site. This summary is called f’s usage signature. Remember that
the main judgement describes how a term transforms a demand for
the value into demands on its context. So a usage signature must be
a (conservative approximation of this) demand transformer.
There are many ways in which one might approximate f’s demand
transformer, but rule LETDN (Figure 4) uses a particularly simple
one:
• Look at f’s right hand side �y1 . . .�yk. e1, where e1 is not a

lambda-expression.
• Analyse e1 in demand U , giving h⌧1 ; '1i.
• Record the triple hk ;'(y) ! ⌧1 ;'1\yi as f’s usage signature

in the environment P when analysing the body of the let.
Now, at a call site of f, rule VARDN calls transform(⇢, d) to use
the recorded usage signature ⇢ to transform the demand d for this
occurrence of f.
What does transform(hk ; ⌧ ; 'i, d) do (Figure 1)? If the demand
d on f is stronger than C

1(. . .C 1(U)), where the call demands
are nested k deep, we can safely unleash h⌧ ; 'i at the call site. If
not, we simply treat the function as if it were called many times, by
unleashing h!⇤⌧ ; !⇤'i, multiplying both the demand type ⌧ and
the usage environment ' (Figure 2). Rule LETDNABS handles the
case when the variable is not used in the body.

3.6 Thunks
The LETDN rule unleashes (an approximation to) the demands of
the right-hand side at each usage site. This is good if the right hand
side is a lambda, but not good otherwise, for two reasons. Consider
let x = y + 1 in x + x

How many times is y demanded? Just once! The thunk x is de-
manded twice, but x’s thunk is memoised, so the y+1 is evaluated
only once. So it is wrong to unleash a demand on y at each of x’s
occurrence sites. Contrast the situation where x is a function
let x = \v. y + v in x 42 + x 239

Here y really is demanded twice, and LETDN does that. Another
reason that LETDN would be sub-optimal for thunks is shown here:

5

• The signature environment P maps some of free variables of
e to their usage signatures, ⇢ (Section 3.5). Any free variables
outside the domain of P have an uninformative signature.

• The usage demand, d , describes the degree to which e is eval-
uated, including how many times its sub-components are eval-
uated or called.

• Using P , the judgement transforms the incoming demand d into
the demands h⌧ ; 'i that e places on its arguments and free

variables respectively:
The usage that e places on its argument is given by ⌧ , which
gives a demand d

† for each argument.

The usage that e places on its free variables is given by its
free-variable usage (fv-usage), ', which is simply a finite
mapping from variables to usage demands.

• We will discuss the elaborated expressions e0 in Section 3.7.

For example, consider the expression

e = �x . case x of (p, q) ! (p, f True)

Suppose we place demand C
1(U) on e , so that e is called, just

once. What demand does it then place on its arguments and free
variables?

✏ Ì e # C
1(U)) h1⇤U (!⇤U ,A) ! • ; {f 7! 1⇤C 1(U)}i

That is, e will use its argument once, its argument’s first component
perhaps many times, but will ignore its arguments second compo-
nent (the A in the usage type). Moreover e will call f just once.

In short, we think of the analysis as describing a demand trans-

former, transforming a demand on the result of e into demands on
its arguments and free variables.

3.3 Pairs and case expressions
With these definitions in mind, we can look at some of the analysis
rules in Figure 3. Rule PAIR explains how to analyse a pair under
a demand U (d†

1 , d
†
2). We simply analyse the two components,

under d†
1 or d†

2 respectively, and combine the results with “&”. The
auxiliary judgement Ì⇤ (Figure 3) deals with the multiplicity of
the argument demands d†

i .

The “&” operator, pronounced “both”, is defined in Figure 2, and
combines the free-variable usages '1 and '2. For the most part the
definition is straightforward, but there is a very important wrinkle
for call demands:

C
n1(d1)&C

n2(d2) = C
!(d1 t d2)

The “!” part is easy, since n1 and n2 are both at least 1. But note
the switch from & to the least upper bound t! To see why, consider
what demand this expression places on f:

f 1 2 + f 3 4

Each call gives a usage demand for f of 1⇤C 1(C 1(U)), and if we
use & to combine that demand with itself we get !⇤C!(C 1(U)).
The inner “1” is a consequence of the switch to t, and rightly
expresses the fact that no partial application of f is called more
than once.

The other rules for pairs PAIRU, PAIRHU, and case expressions
CASE should now be readily comprehensible ('r\x ,y stands for
the removal of {x , y} from the domain of 'r .).

3.4 Lambda and application
Rule LAM for lambdas expects the incoming demand to be a call
demand C

n(de). Then it analyses the body e with demand de to
give h⌧ ; 'i. If n = 1 the lambda is called at most once, so
we can return h⌧ ; 'i; but if n = ! the lambda may be called

more than once, and each call will place a new demand on the
free variables. The n ⇤' operation on the bottom line accounts for
this multiplicity, and is defined in Figure 2. Rule LAMU handles
an incoming demand of U by treating it just like C

!(U), while
LAMHU deals with the head-used demand HU , where the lambda
is not even called so we do not need to analyse the body, and e

is obtained from e by adding arbitrary annotations. Similarly the
return type ⌧ can be any type, since the �-abstraction is not going
to be applied, but is only head-used. Dually, given an application
(e y), rule APPA analyses e with demand C

1(d), reflecting that
e is here called once. This returns the demand hd†

2 ! ⌧2 ; '1i
on the context. Then we can analyse the argument under demand
d
†
2 , using Ì⇤, yielding '2; and combine '1 and '2. Rule APPB

applies when analysing e1 yields the less-informative usage type •.

3.5 Usage signatures
Suppose we have the term

let f = \x.\y. x True in f p q

We would like to determine the correct demands on p and q, namely
1⇤C 1(U) and A respectively. The gold standard would be to analyse
f’s right-hand side at every call site; that is, to behave as if f were
inlined at each call site. But that is not very modular; with deeply
nested function definitions, it can be exponentially expensive to
analyse each function body afresh at each call site; and it does not
work at all for recursive functions. Instead, we want to analyse f,
summarise its behaviour, and then use that summary at each call
site. This summary is called f’s usage signature. Remember that
the main judgement describes how a term transforms a demand for
the value into demands on its context. So a usage signature must be
a (conservative approximation of this) demand transformer.
There are many ways in which one might approximate f’s demand
transformer, but rule LETDN (Figure 4) uses a particularly simple
one:
• Look at f’s right hand side �y1 . . .�yk. e1, where e1 is not a

lambda-expression.
• Analyse e1 in demand U , giving h⌧1 ; '1i.
• Record the triple hk ;'(y) ! ⌧1 ;'1\yi as f’s usage signature

in the environment P when analysing the body of the let.
Now, at a call site of f, rule VARDN calls transform(⇢, d) to use
the recorded usage signature ⇢ to transform the demand d for this
occurrence of f.
What does transform(hk ; ⌧ ; 'i, d) do (Figure 1)? If the demand
d on f is stronger than C

1(. . .C 1(U)), where the call demands
are nested k deep, we can safely unleash h⌧ ; 'i at the call site. If
not, we simply treat the function as if it were called many times, by
unleashing h!⇤⌧ ; !⇤'i, multiplying both the demand type ⌧ and
the usage environment ' (Figure 2). Rule LETDNABS handles the
case when the variable is not used in the body.

3.6 Thunks
The LETDN rule unleashes (an approximation to) the demands of
the right-hand side at each usage site. This is good if the right hand
side is a lambda, but not good otherwise, for two reasons. Consider
let x = y + 1 in x + x

How many times is y demanded? Just once! The thunk x is de-
manded twice, but x’s thunk is memoised, so the y+1 is evaluated
only once. So it is wrong to unleash a demand on y at each of x’s
occurrence sites. Contrast the situation where x is a function
let x = \v. y + v in x 42 + x 239

Here y really is demanded twice, and LETDN does that. Another
reason that LETDN would be sub-optimal for thunks is shown here:

5

• The signature environment P maps some of free variables of
e to their usage signatures, ⇢ (Section 3.5). Any free variables
outside the domain of P have an uninformative signature.

• The usage demand, d , describes the degree to which e is eval-
uated, including how many times its sub-components are eval-
uated or called.

• Using P , the judgement transforms the incoming demand d into
the demands h⌧ ; 'i that e places on its arguments and free

variables respectively:
The usage that e places on its argument is given by ⌧ , which
gives a demand d

† for each argument.

The usage that e places on its free variables is given by its
free-variable usage (fv-usage), ', which is simply a finite
mapping from variables to usage demands.

• We will discuss the elaborated expressions e0 in Section 3.7.

For example, consider the expression

e = �x . case x of (p, q) ! (p, f True)

Suppose we place demand C
1(U) on e , so that e is called, just

once. What demand does it then place on its arguments and free
variables?

✏ Ì e # C
1(U)) h1⇤U (!⇤U ,A) ! • ; {f 7! 1⇤C 1(U)}i

That is, e will use its argument once, its argument’s first component
perhaps many times, but will ignore its arguments second compo-
nent (the A in the usage type). Moreover e will call f just once.

In short, we think of the analysis as describing a demand trans-

former, transforming a demand on the result of e into demands on
its arguments and free variables.

3.3 Pairs and case expressions
With these definitions in mind, we can look at some of the analysis
rules in Figure 3. Rule PAIR explains how to analyse a pair under
a demand U (d†

1 , d
†
2). We simply analyse the two components,

under d†
1 or d†

2 respectively, and combine the results with “&”. The
auxiliary judgement Ì⇤ (Figure 3) deals with the multiplicity of
the argument demands d†

i .

The “&” operator, pronounced “both”, is defined in Figure 2, and
combines the free-variable usages '1 and '2. For the most part the
definition is straightforward, but there is a very important wrinkle
for call demands:

C
n1(d1)&C

n2(d2) = C
!(d1 t d2)

The “!” part is easy, since n1 and n2 are both at least 1. But note
the switch from & to the least upper bound t! To see why, consider
what demand this expression places on f:

f 1 2 + f 3 4

Each call gives a usage demand for f of 1⇤C 1(C 1(U)), and if we
use & to combine that demand with itself we get !⇤C!(C 1(U)).
The inner “1” is a consequence of the switch to t, and rightly
expresses the fact that no partial application of f is called more
than once.

The other rules for pairs PAIRU, PAIRHU, and case expressions
CASE should now be readily comprehensible ('r\x ,y stands for
the removal of {x , y} from the domain of 'r .).

3.4 Lambda and application
Rule LAM for lambdas expects the incoming demand to be a call
demand C

n(de). Then it analyses the body e with demand de to
give h⌧ ; 'i. If n = 1 the lambda is called at most once, so
we can return h⌧ ; 'i; but if n = ! the lambda may be called

more than once, and each call will place a new demand on the
free variables. The n ⇤' operation on the bottom line accounts for
this multiplicity, and is defined in Figure 2. Rule LAMU handles
an incoming demand of U by treating it just like C

!(U), while
LAMHU deals with the head-used demand HU , where the lambda
is not even called so we do not need to analyse the body, and e

is obtained from e by adding arbitrary annotations. Similarly the
return type ⌧ can be any type, since the �-abstraction is not going
to be applied, but is only head-used. Dually, given an application
(e y), rule APPA analyses e with demand C

1(d), reflecting that
e is here called once. This returns the demand hd†

2 ! ⌧2 ; '1i
on the context. Then we can analyse the argument under demand
d
†
2 , using Ì⇤, yielding '2; and combine '1 and '2. Rule APPB

applies when analysing e1 yields the less-informative usage type •.

3.5 Usage signatures
Suppose we have the term

let f = \x.\y. x True in f p q

We would like to determine the correct demands on p and q, namely
1⇤C 1(U) and A respectively. The gold standard would be to analyse
f’s right-hand side at every call site; that is, to behave as if f were
inlined at each call site. But that is not very modular; with deeply
nested function definitions, it can be exponentially expensive to
analyse each function body afresh at each call site; and it does not
work at all for recursive functions. Instead, we want to analyse f,
summarise its behaviour, and then use that summary at each call
site. This summary is called f’s usage signature. Remember that
the main judgement describes how a term transforms a demand for
the value into demands on its context. So a usage signature must be
a (conservative approximation of this) demand transformer.
There are many ways in which one might approximate f’s demand
transformer, but rule LETDN (Figure 4) uses a particularly simple
one:
• Look at f’s right hand side �y1 . . .�yk. e1, where e1 is not a

lambda-expression.
• Analyse e1 in demand U , giving h⌧1 ; '1i.
• Record the triple hk ;'(y) ! ⌧1 ;'1\yi as f’s usage signature

in the environment P when analysing the body of the let.
Now, at a call site of f, rule VARDN calls transform(⇢, d) to use
the recorded usage signature ⇢ to transform the demand d for this
occurrence of f.
What does transform(hk ; ⌧ ; 'i, d) do (Figure 1)? If the demand
d on f is stronger than C

1(. . .C 1(U)), where the call demands
are nested k deep, we can safely unleash h⌧ ; 'i at the call site. If
not, we simply treat the function as if it were called many times, by
unleashing h!⇤⌧ ; !⇤'i, multiplying both the demand type ⌧ and
the usage environment ' (Figure 2). Rule LETDNABS handles the
case when the variable is not used in the body.

3.6 Thunks
The LETDN rule unleashes (an approximation to) the demands of
the right-hand side at each usage site. This is good if the right hand
side is a lambda, but not good otherwise, for two reasons. Consider
let x = y + 1 in x + x

How many times is y demanded? Just once! The thunk x is de-
manded twice, but x’s thunk is memoised, so the y+1 is evaluated
only once. So it is wrong to unleash a demand on y at each of x’s
occurrence sites. Contrast the situation where x is a function
let x = \v. y + v in x 42 + x 239

Here y really is demanded twice, and LETDN does that. Another
reason that LETDN would be sub-optimal for thunks is shown here:

5

• The signature environment P maps some of free variables of
e to their usage signatures, ⇢ (Section 3.5). Any free variables
outside the domain of P have an uninformative signature.

• The usage demand, d , describes the degree to which e is eval-
uated, including how many times its sub-components are eval-
uated or called.

• Using P , the judgement transforms the incoming demand d into
the demands h⌧ ; 'i that e places on its arguments and free

variables respectively:
The usage that e places on its argument is given by ⌧ , which
gives a demand d

† for each argument.

The usage that e places on its free variables is given by its
free-variable usage (fv-usage), ', which is simply a finite
mapping from variables to usage demands.

• We will discuss the elaborated expressions e0 in Section 3.7.

For example, consider the expression

e = �x . case x of (p, q) ! (p, f True)

Suppose we place demand C
1(U) on e , so that e is called, just

once. What demand does it then place on its arguments and free
variables?

✏ Ì e # C
1(U)) h1⇤U (!⇤U ,A) ! • ; {f 7! 1⇤C 1(U)}i

That is, e will use its argument once, its argument’s first component
perhaps many times, but will ignore its arguments second compo-
nent (the A in the usage type). Moreover e will call f just once.

In short, we think of the analysis as describing a demand trans-

former, transforming a demand on the result of e into demands on
its arguments and free variables.

3.3 Pairs and case expressions
With these definitions in mind, we can look at some of the analysis
rules in Figure 3. Rule PAIR explains how to analyse a pair under
a demand U (d†

1 , d
†
2). We simply analyse the two components,

under d†
1 or d†

2 respectively, and combine the results with “&”. The
auxiliary judgement Ì⇤ (Figure 3) deals with the multiplicity of
the argument demands d†

i .

The “&” operator, pronounced “both”, is defined in Figure 2, and
combines the free-variable usages '1 and '2. For the most part the
definition is straightforward, but there is a very important wrinkle
for call demands:

C
n1(d1)&C

n2(d2) = C
!(d1 t d2)

The “!” part is easy, since n1 and n2 are both at least 1. But note
the switch from & to the least upper bound t! To see why, consider
what demand this expression places on f:

f 1 2 + f 3 4

Each call gives a usage demand for f of 1⇤C 1(C 1(U)), and if we
use & to combine that demand with itself we get !⇤C!(C 1(U)).
The inner “1” is a consequence of the switch to t, and rightly
expresses the fact that no partial application of f is called more
than once.

The other rules for pairs PAIRU, PAIRHU, and case expressions
CASE should now be readily comprehensible ('r\x ,y stands for
the removal of {x , y} from the domain of 'r .).

3.4 Lambda and application
Rule LAM for lambdas expects the incoming demand to be a call
demand C

n(de). Then it analyses the body e with demand de to
give h⌧ ; 'i. If n = 1 the lambda is called at most once, so
we can return h⌧ ; 'i; but if n = ! the lambda may be called

more than once, and each call will place a new demand on the
free variables. The n ⇤' operation on the bottom line accounts for
this multiplicity, and is defined in Figure 2. Rule LAMU handles
an incoming demand of U by treating it just like C

!(U), while
LAMHU deals with the head-used demand HU , where the lambda
is not even called so we do not need to analyse the body, and e

is obtained from e by adding arbitrary annotations. Similarly the
return type ⌧ can be any type, since the �-abstraction is not going
to be applied, but is only head-used. Dually, given an application
(e y), rule APPA analyses e with demand C

1(d), reflecting that
e is here called once. This returns the demand hd†

2 ! ⌧2 ; '1i
on the context. Then we can analyse the argument under demand
d
†
2 , using Ì⇤, yielding '2; and combine '1 and '2. Rule APPB

applies when analysing e1 yields the less-informative usage type •.

3.5 Usage signatures
Suppose we have the term

let f = \x.\y. x True in f p q

We would like to determine the correct demands on p and q, namely
1⇤C 1(U) and A respectively. The gold standard would be to analyse
f’s right-hand side at every call site; that is, to behave as if f were
inlined at each call site. But that is not very modular; with deeply
nested function definitions, it can be exponentially expensive to
analyse each function body afresh at each call site; and it does not
work at all for recursive functions. Instead, we want to analyse f,
summarise its behaviour, and then use that summary at each call
site. This summary is called f’s usage signature. Remember that
the main judgement describes how a term transforms a demand for
the value into demands on its context. So a usage signature must be
a (conservative approximation of this) demand transformer.
There are many ways in which one might approximate f’s demand
transformer, but rule LETDN (Figure 4) uses a particularly simple
one:
• Look at f’s right hand side �y1 . . .�yk. e1, where e1 is not a

lambda-expression.
• Analyse e1 in demand U , giving h⌧1 ; '1i.
• Record the triple hk ;'(y) ! ⌧1 ;'1\yi as f’s usage signature

in the environment P when analysing the body of the let.
Now, at a call site of f, rule VARDN calls transform(⇢, d) to use
the recorded usage signature ⇢ to transform the demand d for this
occurrence of f.
What does transform(hk ; ⌧ ; 'i, d) do (Figure 1)? If the demand
d on f is stronger than C

1(. . .C 1(U)), where the call demands
are nested k deep, we can safely unleash h⌧ ; 'i at the call site. If
not, we simply treat the function as if it were called many times, by
unleashing h!⇤⌧ ; !⇤'i, multiplying both the demand type ⌧ and
the usage environment ' (Figure 2). Rule LETDNABS handles the
case when the variable is not used in the body.

3.6 Thunks
The LETDN rule unleashes (an approximation to) the demands of
the right-hand side at each usage site. This is good if the right hand
side is a lambda, but not good otherwise, for two reasons. Consider
let x = y + 1 in x + x

How many times is y demanded? Just once! The thunk x is de-
manded twice, but x’s thunk is memoised, so the y+1 is evaluated
only once. So it is wrong to unleash a demand on y at each of x’s
occurrence sites. Contrast the situation where x is a function
let x = \v. y + v in x 42 + x 239

Here y really is demanded twice, and LETDN does that. Another
reason that LETDN would be sub-optimal for thunks is shown here:

5

| {z } | {z }

'⌧

Each function is a
backwards demand transformer

it transforms a context demand to
argument demands and fv-demands.

How many context demands are there?

1

We cannot compute best argument demands
for all contexts:

need to approximate.

Demand Lattice
!⇤U

1⇤U

1⇤U(A,A)

1⇤U(!⇤U,A)1⇤U(A,!⇤C1(U))

A

!⇤U(!⇤U,A) !⇤C!(U)

!⇤C!(U(A,!⇤U))

1⇤C!(U(A,!⇤U))

> =

? =

Each function is
a monotone backwards demand transformer.

v

v

!⇤U . . .!⇤U

d⇤c

d⇤a1
. . . d⇤an

d1a1
. . . d1an

d2cd1c
Context demand

Argument demands

Exploiting demand monotonicity

T =

Analysis-based annotations

µ(d†) = m

µ(A) = 0 µ(n⇤d) = n

d
†
1 & d

†
2 = d

†
3 d

†
1 t d

†
2 = d

†
3

A& d
† = d

†

d
† &A = d

†

n1⇤d1 &n2⇤d2 = !⇤(d1 & d2)

A t d
† = d

†

d
† tA = d

†

n1⇤d1 t n2⇤d2 = (n1 t n2)⇤(d1 t d2)

d1 & d2 = d3 d1 t d2 = d3

d &U = U

U & d = U

d &HU = d

HU & d = d

C
n1 (d1)&C

n2 (d2) = C
!(d1 t d2)

U (d†
1 , d

†
2)&U (d†

3 , d
†
4) = U (d†

1 & d
†
3 , d

†
2 & d

†
4)

d tU = U

U t d = U

d tHU = d

HU t d = d

C
n1 (d1) t C

n2 (d2) = C
n1tn2 (d1 t d2)

U (d†
1 , d

†
2) tU (d†

3 , d
†
4) = U (d†

1 t d
†
3 , d

†
2 t d

†
4)

'1 &'2 = '3 '1 t '2 = '3

'1 &'2 = {(x :d†
1 & d

†
2) | 'i (x) = d

†
i }

'1 t '2 = {(x :d†
1 t d

†
2) | 'i (x) = d

†
i }

⌧1 t ⌧2 = ⌧3

(d†
1 ! ⌧1) t (d†

1 ! ⌧2) = (d†
1 t d

†
2) ! (⌧1 t ⌧2)

⌧ t • = •

h⌧1 ; '1i t h⌧2 ; '2i = h⌧3 ; '3i

h⌧1 ; '1i t h⌧2 ; '2i = h⌧1 t ⌧2 ; '1 t '2i

n⇤d†
1 = d

†
2 n⇤⌧1 = ⌧2 n⇤'1 = '2

1⇤d† = d
†

!⇤d† = d
† & d

†

n⇤• = •
n⇤(d† ! ⌧) = (n⇤d†) ! (n⇤⌧)

n⇤' = {x : n⇤'(x) | x 2 dom(')}

n1 t n2 = n3

1 t 1 = 1 ! t n = ! n t ! = !

a v b

a v b , (a t b) = b

Figure 2: Demands and demand operations

P Ì e # d) h⌧ ; 'i e

(x : ⇢) 2 P h⌧ ; 'i = transform(⇢, d)
VARDN

P Ì x # d) h⌧ ; '&(x :1⇤d)i x

x /2 dom(P)
VARUP

P Ì x # d) h• ; (x :1⇤d)i x

P Ì e # de) h⌧ ; 'i e

LAM
P Ì�x.e # C

n (de)) h'(x) ! ⌧ ; n⇤('\x)i �n
x.e

P Ì�x.e # C
!(U)) h⌧ ; 'i e

0

LAMU
P Ì�x.e # U) h⌧ ; 'i e

0

LAMHU
P Ì�x.e # HU) h⌧ ; ✏i �1

x.e

P Ì e1 # C
1(d)) hd†

2 !⌧r ; '1i e1 P Ì⇤y # d
†
2) '2

APPA
P Ì e1 y # d) h⌧r ; '1 &'2i e1 y

P Ì e1 # C
1(d)) h• ; '1i e1 P Ì⇤y # !⇤U) '2

APPB
P Ì e1 y # d) h• ; '1 &'2i e1 y

P Ì⇤xi # d
†
i) 'i i 2 1, 2

PAIR
P Ì (x1, x2) # U (d†

1 , d
†
2)) h• ; '1 &'2i (x1, x2)

P Ì (x1, x2) # U (!⇤U ,!⇤U)) h• ; 'i e

PAIRU
P Ì (x1, x2) # U) h• ; 'i e

PAIRHU
P Ì (x1, x2) # HU) h• ; ✏i (x1, x2)

P Ì er # d) h⌧ ; 'r i er

P Ì es # U ('r (x),'r (y))) h ; 'si es CASE
P Ì case es of (x , y) ! er # d) h⌧ ; 'r\x ,y &'si

 case es of (x , y) ! er

P Ì⇤x # d
†) '

ABS
P Ì⇤x # A) ✏

P Ì x # d) h⌧ ; 'i x

MULTI
P Ì⇤x # n⇤d) n⇤'

Figure 3: Algorithmic cardinality analysis specification, part 1.

and metatheory are modulo-⌘ (checking that all our definitions do
respect ⌘ is routine).

3.2 Usage analysis

The analysis itself is shown in Figures 3 and 4. The main judgement
form is written thus

P Ì e # d) h⌧ ; 'i e
0

which should be read thus: in signature environment P , and under

usage demand d , the term e places demands h⌧ ; 'i on its compo-

nents, and elaborates to an annotated term e
0. The syntax of each

of these components is given in Figure 1, and their roles in the
judgement are the following:

4

Elaboration

• let-bindings in e are annotated with m ∈ {0, 1, ω}
to indicate how often the let-binding is evaluated;

• Each Lambda λnx .e1 in e carries an annotation n ∈ {1, ω}
to indicate how often the lambda is called.

µ(d†) = m

µ(A) = 0 µ(n⇤d) = n

d
†
1 & d

†
2 = d

†
3 d

†
1 t d

†
2 = d

†
3

A& d
† = d

†

d
† &A = d

†

n1⇤d1 &n2⇤d2 = !⇤(d1 & d2)

A t d
† = d

†

d
† tA = d

†

n1⇤d1 t n2⇤d2 = (n1 t n2)⇤(d1 t d2)

d1 & d2 = d3 d1 t d2 = d3

d &U = U

U & d = U

d &HU = d

HU & d = d

C
n1 (d1)&C

n2 (d2) = C
!(d1 t d2)

U (d†
1 , d

†
2)&U (d†

3 , d
†
4) = U (d†

1 & d
†
3 , d

†
2 & d

†
4)

d tU = U

U t d = U

d tHU = d

HU t d = d

C
n1 (d1) t C

n2 (d2) = C
n1tn2 (d1 t d2)

U (d†
1 , d

†
2) tU (d†

3 , d
†
4) = U (d†

1 t d
†
3 , d

†
2 t d

†
4)

'1 &'2 = '3 '1 t '2 = '3

'1 &'2 = {(x :d†
1 & d

†
2) | 'i (x) = d

†
i }

'1 t '2 = {(x :d†
1 t d

†
2) | 'i (x) = d

†
i }

⌧1 t ⌧2 = ⌧3

(d†
1 ! ⌧1) t (d†

1 ! ⌧2) = (d†
1 t d

†
2) ! (⌧1 t ⌧2)

⌧ t • = •

h⌧1 ; '1i t h⌧2 ; '2i = h⌧3 ; '3i

h⌧1 ; '1i t h⌧2 ; '2i = h⌧1 t ⌧2 ; '1 t '2i

n⇤d†
1 = d

†
2 n⇤⌧1 = ⌧2 n⇤'1 = '2

1⇤d† = d
†

!⇤d† = d
† & d

†

n⇤• = •
n⇤(d† ! ⌧) = (n⇤d†) ! (n⇤⌧)

n⇤' = {x : n⇤'(x) | x 2 dom(')}

n1 t n2 = n3

1 t 1 = 1 ! t n = ! n t ! = !

a v b

a v b , (a t b) = b

Figure 2: Demands and demand operations

P Ì e # d) h⌧ ; 'i e

(x : ⇢) 2 P h⌧ ; 'i = transform(⇢, d)
VARDN

P Ì x # d) h⌧ ; '&(x :1⇤d)i x

x /2 dom(P)
VARUP

P Ì x # d) h• ; (x :1⇤d)i x

P Ì e # de) h⌧ ; 'i e

LAM
P Ì�x.e # C

n (de)) h'(x) ! ⌧ ; n⇤('\x)i �n
x.e

P Ì�x.e # C
!(U)) h⌧ ; 'i e

0

LAMU
P Ì�x.e # U) h⌧ ; 'i e

0

LAMHU
P Ì�x.e # HU) h⌧ ; ✏i �1

x.e

P Ì e1 # C
1(d)) hd†

2 !⌧r ; '1i e1 P Ì⇤y # d
†
2) '2

APPA
P Ì e1 y # d) h⌧r ; '1 &'2i e1 y

P Ì e1 # C
1(d)) h• ; '1i e1 P Ì⇤y # !⇤U) '2

APPB
P Ì e1 y # d) h• ; '1 &'2i e1 y

P Ì⇤xi # d
†
i) 'i i 2 1, 2

PAIR
P Ì (x1, x2) # U (d†

1 , d
†
2)) h• ; '1 &'2i (x1, x2)

P Ì (x1, x2) # U (!⇤U ,!⇤U)) h• ; 'i e

PAIRU
P Ì (x1, x2) # U) h• ; 'i e

PAIRHU
P Ì (x1, x2) # HU) h• ; ✏i (x1, x2)

P Ì er # d) h⌧ ; 'r i er

P Ì es # U ('r (x),'r (y))) h ; 'si es CASE
P Ì case es of (x , y) ! er # d) h⌧ ; 'r\x ,y &'si

 case es of (x , y) ! er

P Ì⇤x # d
†) '

ABS
P Ì⇤x # A) ✏

P Ì x # d) h⌧ ; 'i x

MULTI
P Ì⇤x # n⇤d) n⇤'

Figure 3: Algorithmic cardinality analysis specification, part 1.

and metatheory are modulo-⌘ (checking that all our definitions do
respect ⌘ is routine).

3.2 Usage analysis

The analysis itself is shown in Figures 3 and 4. The main judgement
form is written thus

P Ì e # d) h⌧ ; 'i e
0

which should be read thus: in signature environment P , and under

usage demand d , the term e places demands h⌧ ; 'i on its compo-

nents, and elaborates to an annotated term e
0. The syntax of each

of these components is given in Figure 1, and their roles in the
judgement are the following:

4

µ(d†) = m

µ(A) = 0 µ(n⇤d) = n

d
†
1 & d

†
2 = d

†
3 d

†
1 t d

†
2 = d

†
3

A& d
† = d

†

d
† &A = d

†

n1⇤d1 &n2⇤d2 = !⇤(d1 & d2)

A t d
† = d

†

d
† tA = d

†

n1⇤d1 t n2⇤d2 = (n1 t n2)⇤(d1 t d2)

d1 & d2 = d3 d1 t d2 = d3

d &U = U

U & d = U

d &HU = d

HU & d = d

C
n1 (d1)&C

n2 (d2) = C
!(d1 t d2)

U (d†
1 , d

†
2)&U (d†

3 , d
†
4) = U (d†

1 & d
†
3 , d

†
2 & d

†
4)

d tU = U

U t d = U

d tHU = d

HU t d = d

C
n1 (d1) t C

n2 (d2) = C
n1tn2 (d1 t d2)

U (d†
1 , d

†
2) tU (d†

3 , d
†
4) = U (d†

1 t d
†
3 , d

†
2 t d

†
4)

'1 &'2 = '3 '1 t '2 = '3

'1 &'2 = {(x :d†
1 & d

†
2) | 'i (x) = d

†
i }

'1 t '2 = {(x :d†
1 t d

†
2) | 'i (x) = d

†
i }

⌧1 t ⌧2 = ⌧3

(d†
1 ! ⌧1) t (d†

1 ! ⌧2) = (d†
1 t d

†
2) ! (⌧1 t ⌧2)

⌧ t • = •

h⌧1 ; '1i t h⌧2 ; '2i = h⌧3 ; '3i

h⌧1 ; '1i t h⌧2 ; '2i = h⌧1 t ⌧2 ; '1 t '2i

n⇤d†
1 = d

†
2 n⇤⌧1 = ⌧2 n⇤'1 = '2

1⇤d† = d
†

!⇤d† = d
† & d

†

n⇤• = •
n⇤(d† ! ⌧) = (n⇤d†) ! (n⇤⌧)

n⇤' = {x : n⇤'(x) | x 2 dom(')}

n1 t n2 = n3

1 t 1 = 1 ! t n = ! n t ! = !

a v b

a v b , (a t b) = b

Figure 2: Demands and demand operations

P Ì e # d) h⌧ ; 'i e

(x : ⇢) 2 P h⌧ ; 'i = transform(⇢, d)
VARDN

P Ì x # d) h⌧ ; '&(x :1⇤d)i x

x /2 dom(P)
VARUP

P Ì x # d) h• ; (x :1⇤d)i x

P Ì e # de) h⌧ ; 'i e

LAM
P Ì�x.e # C

n (de)) h'(x) ! ⌧ ; n⇤('\x)i �n
x.e

P Ì�x.e # C
!(U)) h⌧ ; 'i e

0

LAMU
P Ì�x.e # U) h⌧ ; 'i e

0

LAMHU
P Ì�x.e # HU) h⌧ ; ✏i �1

x.e

P Ì e1 # C
1(d)) hd†

2 !⌧r ; '1i e1 P Ì⇤y # d
†
2) '2

APPA
P Ì e1 y # d) h⌧r ; '1 &'2i e1 y

P Ì e1 # C
1(d)) h• ; '1i e1 P Ì⇤y # !⇤U) '2

APPB
P Ì e1 y # d) h• ; '1 &'2i e1 y

P Ì⇤xi # d
†
i) 'i i 2 1, 2

PAIR
P Ì (x1, x2) # U (d†

1 , d
†
2)) h• ; '1 &'2i (x1, x2)

P Ì (x1, x2) # U (!⇤U ,!⇤U)) h• ; 'i e

PAIRU
P Ì (x1, x2) # U) h• ; 'i e

PAIRHU
P Ì (x1, x2) # HU) h• ; ✏i (x1, x2)

P Ì er # d) h⌧ ; 'r i er

P Ì es # U ('r (x),'r (y))) h ; 'si es CASE
P Ì case es of (x , y) ! er # d) h⌧ ; 'r\x ,y &'si

 case es of (x , y) ! er

P Ì⇤x # d
†) '

ABS
P Ì⇤x # A) ✏

P Ì x # d) h⌧ ; 'i x

MULTI
P Ì⇤x # n⇤d) n⇤'

Figure 3: Algorithmic cardinality analysis specification, part 1.

and metatheory are modulo-⌘ (checking that all our definitions do
respect ⌘ is routine).

3.2 Usage analysis

The analysis itself is shown in Figures 3 and 4. The main judgement
form is written thus

P Ì e # d) h⌧ ; 'i e
0

which should be read thus: in signature environment P , and under

usage demand d , the term e places demands h⌧ ; 'i on its compo-

nents, and elaborates to an annotated term e
0. The syntax of each

of these components is given in Figure 1, and their roles in the
judgement are the following:

4

let f

1
= �1x.�1y. x True in f p q

let f = �x.�y. x True in f p q✏ Ì

) h•; {p 7! 1⇤C1(U), q 7! A}i

• The signature environment P maps some of free variables of
e to their usage signatures, ⇢ (Section 3.5). Any free variables
outside the domain of P have an uninformative signature.

• The usage demand, d , describes the degree to which e is eval-
uated, including how many times its sub-components are eval-
uated or called.

• Using P , the judgement transforms the incoming demand d into
the demands h⌧ ; 'i that e places on its arguments and free

variables respectively:
The usage that e places on its argument is given by ⌧ , which
gives a demand d

† for each argument.

The usage that e places on its free variables is given by its
free-variable usage (fv-usage), ', which is simply a finite
mapping from variables to usage demands.

• We will discuss the elaborated expressions e0 in Section 3.7.

For example, consider the expression

e = �x . case x of (p, q) ! (p, f True)

Suppose we place demand C
1(U) on e , so that e is called, just

once. What demand does it then place on its arguments and free
variables?

✏ Ì e # C
1(U)) h1⇤U (!⇤U ,A) ! • ; {f 7! 1⇤C 1(U)}i

That is, e will use its argument once, its argument’s first component
perhaps many times, but will ignore its arguments second compo-
nent (the A in the usage type). Moreover e will call f just once.

In short, we think of the analysis as describing a demand trans-

former, transforming a demand on the result of e into demands on
its arguments and free variables.

3.3 Pairs and case expressions
With these definitions in mind, we can look at some of the analysis
rules in Figure 3. Rule PAIR explains how to analyse a pair under
a demand U (d†

1 , d
†
2). We simply analyse the two components,

under d†
1 or d†

2 respectively, and combine the results with “&”. The
auxiliary judgement Ì⇤ (Figure 3) deals with the multiplicity of
the argument demands d†

i .

The “&” operator, pronounced “both”, is defined in Figure 2, and
combines the free-variable usages '1 and '2. For the most part the
definition is straightforward, but there is a very important wrinkle
for call demands:

C
n1(d1)&C

n2(d2) = C
!(d1 t d2)

The “!” part is easy, since n1 and n2 are both at least 1. But note
the switch from & to the least upper bound t! To see why, consider
what demand this expression places on f:

f 1 2 + f 3 4

Each call gives a usage demand for f of 1⇤C 1(C 1(U)), and if we
use & to combine that demand with itself we get !⇤C!(C 1(U)).
The inner “1” is a consequence of the switch to t, and rightly
expresses the fact that no partial application of f is called more
than once.

The other rules for pairs PAIRU, PAIRHU, and case expressions
CASE should now be readily comprehensible ('r\x ,y stands for
the removal of {x , y} from the domain of 'r .).

3.4 Lambda and application
Rule LAM for lambdas expects the incoming demand to be a call
demand C

n(de). Then it analyses the body e with demand de to
give h⌧ ; 'i. If n = 1 the lambda is called at most once, so
we can return h⌧ ; 'i; but if n = ! the lambda may be called

more than once, and each call will place a new demand on the
free variables. The n ⇤' operation on the bottom line accounts for
this multiplicity, and is defined in Figure 2. Rule LAMU handles
an incoming demand of U by treating it just like C

!(U), while
LAMHU deals with the head-used demand HU , where the lambda
is not even called so we do not need to analyse the body, and e

is obtained from e by adding arbitrary annotations. Similarly the
return type ⌧ can be any type, since the �-abstraction is not going
to be applied, but is only head-used. Dually, given an application
(e y), rule APPA analyses e with demand C

1(d), reflecting that
e is here called once. This returns the demand hd†

2 ! ⌧2 ; '1i
on the context. Then we can analyse the argument under demand
d
†
2 , using Ì⇤, yielding '2; and combine '1 and '2. Rule APPB

applies when analysing e1 yields the less-informative usage type •.

3.5 Usage signatures
Suppose we have the term

let f = \x.\y. x True in f p q

We would like to determine the correct demands on p and q, namely
1⇤C 1(U) and A respectively. The gold standard would be to analyse
f’s right-hand side at every call site; that is, to behave as if f were
inlined at each call site. But that is not very modular; with deeply
nested function definitions, it can be exponentially expensive to
analyse each function body afresh at each call site; and it does not
work at all for recursive functions. Instead, we want to analyse f,
summarise its behaviour, and then use that summary at each call
site. This summary is called f’s usage signature. Remember that
the main judgement describes how a term transforms a demand for
the value into demands on its context. So a usage signature must be
a (conservative approximation of this) demand transformer.
There are many ways in which one might approximate f’s demand
transformer, but rule LETDN (Figure 4) uses a particularly simple
one:
• Look at f’s right hand side �y1 . . .�yk. e1, where e1 is not a

lambda-expression.
• Analyse e1 in demand U , giving h⌧1 ; '1i.
• Record the triple hk ;'(y) ! ⌧1 ;'1\yi as f’s usage signature

in the environment P when analysing the body of the let.
Now, at a call site of f, rule VARDN calls transform(⇢, d) to use
the recorded usage signature ⇢ to transform the demand d for this
occurrence of f.
What does transform(hk ; ⌧ ; 'i, d) do (Figure 1)? If the demand
d on f is stronger than C

1(. . .C 1(U)), where the call demands
are nested k deep, we can safely unleash h⌧ ; 'i at the call site. If
not, we simply treat the function as if it were called many times, by
unleashing h!⇤⌧ ; !⇤'i, multiplying both the demand type ⌧ and
the usage environment ' (Figure 2). Rule LETDNABS handles the
case when the variable is not used in the body.

3.6 Thunks
The LETDN rule unleashes (an approximation to) the demands of
the right-hand side at each usage site. This is good if the right hand
side is a lambda, but not good otherwise, for two reasons. Consider
let x = y + 1 in x + x

How many times is y demanded? Just once! The thunk x is de-
manded twice, but x’s thunk is memoised, so the y+1 is evaluated
only once. So it is wrong to unleash a demand on y at each of x’s
occurrence sites. Contrast the situation where x is a function
let x = \v. y + v in x 42 + x 239

Here y really is demanded twice, and LETDN does that. Another
reason that LETDN would be sub-optimal for thunks is shown here:

5

Soundness

Restricted
operational
semantics

(makes sure that the annotations are respected)

Annotating
cardinality

analysis

Restricted
operational
semantics

Type and effect
system

produces well-typed
programs

progress and preservation

annotated programs
do not get stuck

Sestoft:JFP97

e1

Small-Step CBN Machine

e1hH1, , S1i

Small-Step CBN Machine

Small-Step CBN Machine

e1hH1, , S1i hHn, en, Sni�! �!. . .

e1 e1

Erasing Annotations

e1e1
\
=

hH1, , S1ie1

Restricted CBN Machine

• 1-annotated lambdas can be called at most once;

• 1-annotated bindings can be used only once;

• 0-annotated bindings cannot be used at all.

hH1, , S1ie1 hHn, en, Sni,�! ,�!. . .

Soundness Theorem

An analysis-annotated program
behaves the same way under restricted semantics

as the original program
under the normal semantics.

Soundness Theorem

If ✏ Ì e1 # U) h⌧, ✏i e1

P ::= ✏ | P , (x :%) % 2 d 7! h⌧ ; 'i

P ` e # d) h⌧ ; 'i

(x : %) 2 P h⌧ ; 'i = %(d)
TVARDN

P ` x # d) h⌧ ; '&(x :1⇤d)i

x /2 dom(P)
TVARUP

P ` x # d) h• ; (x :1⇤d)i

d v C
n (de) m � n P ` e # de) h⌧ ; 'i

TLAM
P ` �m

x.e # d) h'(x) ! ⌧ ; n⇤('\x)i

d v HU

TLAMHU
P ` �m

x.e # d) h⌧ ; ✏i

P ` e1 # C
1(d)) h⌧1 ; '1i

⌧1 � d
†
2 ! ⌧r P

⇤̀
y # d

†
2) '2

TAPP
P ` e1 y # d) h⌧r ; '1 &'2i

d v U (d†
1 , d

†
2) P

⇤̀
x1 # d

†
1) '1 P

⇤̀
x2 # d

†
2) '2

TPAIR
P ` (x1, x2) # d) h• ; '1 &'2i

P ` er # d) h⌧ ; 'r i
P ` es # U ('r (x),'r (y))) h ; 'si TCASE

P ` case es of (x , y) ! er # d) h⌧ ; 'r\x ,y &'si

m � µ('2(x)) '2(x) v n ⇤ d1
P ` e1 # d1) h⌧1 ; '1i P

t̀
e1 : %

P , (x :%) ` e2 # d) h⌧ ; '2i TLETDN
P ` let x

m
= e1 in e2 # d) h⌧ ; ('2\x)i

m � n P ` e2 # d) h⌧ ; '2i
n⇤dx = '2(x) P ` e1 # dx) h ; '1i TLETUP

P ` let x
m
= e1 in e2 # d) h⌧ ; '1 &('2\x)i

P ` e2 # d) h⌧ ; '2i A = '2(x)
TLETUPABS

P ` let x
m
= e1 in e2 # d) h⌧ ; '1 &('2\x)i

P
⇤̀
x # d

†) '

TABS
P

⇤̀
x # A) ✏

P ` x # d) h⌧ ; 'i
TMULTI

P
⇤̀
x # n⇤d) n⇤'

P
t̀
e : %

8d1, d2.d1 v d2 =) %(d1) v %(d2)
8d ,', ⌧.(P ` e # d) h⌧ ; 'i) =) h⌧ ; 'i v %(d)

WFTRANS
P `t e : %

Figure 6: Well-annotated terms

Lemma 4.4 (Value demand splitting). If P ` v # (d1 & d2))
h⌧ ; 'i then there exists a split split(v) = (v1, v2) such that:

P ` v1 # d1) h⌧1 ; '1i and P ` v2 # d2) h⌧2 ; '2i and

moreover ⌧1 v ⌧ , ⌧2 v ⌧ and '1 &'2 v '.

Why is Lemma 4.4 important? Consider the following

let x = v in case x 3 of (y,z) -> x 4

HSIM1
✏ / ✏

H1 / H2
HSIM2

H1, [x
07! Exp(e)] / H2

n � 1 H1 / H2 e1 / e2
HSIM3

H1, [x
n7! Exp(e1)] / H2, [x

n7! Exp(e2)]

H1 / H2
HSIM4

H1, [x
07! Val(v)] / H2

H1 / H2 v1 / v2
HSIM5

H1, [x
!7! Val(v1)] / H2, [x

!7! Val(v2)]

SSIM1
✏ / ✏

S1 / S2
SSIM2

(#(x , 1) : S1) / S2

S1 / S2
SSIM3

(#(x ,!) : S1) / (#(x ,!) : S2)

S1 / S2
SSIM4

(• y) : S1 / (• y) : S2

e1 / e2 S1 / S2
SSIM5

((x , y) ! e1) : S1 / ((x , y) ! e2) : S2

Figure 7: Auxiliary simulation relation (heaps and stacks)

The demand exercised on x from the body of the let-binding will
be C

1(U)&C
1(U) = C

!(U) and hence the value v will be
checked against this demand (using the LETUP rule), unleashing
an environment '. However, after substituting v in the body (which
is ultimately what call-by-need will do) we will have checked it
against C 1(U) and C

1(U) independently, unleashing '1 and '2

in each call site. Lemma 4.4 ensures that reduction never increases
the demand on the free variables of the environment, and hence
safety is not compromised. It is precisely the proof of Lemma 4.4
that requires demand transformers to be monotone in the demand
arguments, ensured by WFTRANS.
Theorem 4.5 (Safety of analysis). If ✏ Ì e1 # HU) h⌧ ; ✏i e1

and h✏ ; e1 ; ✏i �!k hH ; e2 ; Si, then there exist H, e2 and S, such

that h✏ ; e1 ; ✏i,�!k hH ; e2 ; Si, H\ = H , S
\ = S and e

\
2 = e2.

The proof is just a combination of Lemma 4.1 and Theorem 4.2.

5. Optimisations
We discuss next the two optimisations enabled by our analysis.

5.1 Optimised allocation for thunks
We show here that for 0-annotated bindings there is no need to
allocate an entry in the heap, and for 1-annotated ones we don’t
have to emit an update frame on the stack. Within the chosen
operational model, this optimisation is of dynamic flavour so we
express this by providing a new, optimising small-step machine
for the annotated expressions. The new semantics is defined in
Figure 8. We will show that programs that can be evaluated via
the counting semantics (Figure 5) can be also evaluated via the
optimised semantics in a smaller or equal number of steps.
The proof is a simulation proof, hence we define relations between
heaps / optimised heaps, and stacks / optimised stacks that are
preserved during evaluation.

8

and

then

P ::= ✏ | P , (x :%) % 2 d 7! h⌧ ; 'i

P ` e # d) h⌧ ; 'i

(x : %) 2 P h⌧ ; 'i = %(d)
TVARDN

P ` x # d) h⌧ ; '&(x :1⇤d)i

x /2 dom(P)
TVARUP

P ` x # d) h• ; (x :1⇤d)i

d v C
n (de) m � n P ` e # de) h⌧ ; 'i

TLAM
P ` �m

x.e # d) h'(x) ! ⌧ ; n⇤('\x)i

d v HU

TLAMHU
P ` �m

x.e # d) h⌧ ; ✏i

P ` e1 # C
1(d)) h⌧1 ; '1i

⌧1 � d
†
2 ! ⌧r P

⇤̀
y # d

†
2) '2

TAPP
P ` e1 y # d) h⌧r ; '1 &'2i

d v U (d†
1 , d

†
2) P

⇤̀
x1 # d

†
1) '1 P

⇤̀
x2 # d

†
2) '2

TPAIR
P ` (x1, x2) # d) h• ; '1 &'2i

P ` er # d) h⌧ ; 'r i
P ` es # U ('r (x),'r (y))) h ; 'si TCASE

P ` case es of (x , y) ! er # d) h⌧ ; 'r\x ,y &'si

m � µ('2(x)) '2(x) v n ⇤ d1
P ` e1 # d1) h⌧1 ; '1i P

t̀
e1 : %

P , (x :%) ` e2 # d) h⌧ ; '2i TLETDN
P ` let x

m
= e1 in e2 # d) h⌧ ; ('2\x)i

m � n P ` e2 # d) h⌧ ; '2i
n⇤dx = '2(x) P ` e1 # dx) h ; '1i TLETUP

P ` let x
m
= e1 in e2 # d) h⌧ ; '1 &('2\x)i

P ` e2 # d) h⌧ ; '2i A = '2(x)
TLETUPABS

P ` let x
m
= e1 in e2 # d) h⌧ ; '1 &('2\x)i

P
⇤̀
x # d

†) '

TABS
P

⇤̀
x # A) ✏

P ` x # d) h⌧ ; 'i
TMULTI

P
⇤̀
x # n⇤d) n⇤'

P
t̀
e : %

8d1, d2.d1 v d2 =) %(d1) v %(d2)
8d ,', ⌧.(P ` e # d) h⌧ ; 'i) =) h⌧ ; 'i v %(d)

WFTRANS
P `t e : %

Figure 6: Well-annotated terms

Lemma 4.4 (Value demand splitting). If P ` v # (d1 & d2))
h⌧ ; 'i then there exists a split split(v) = (v1, v2) such that:

P ` v1 # d1) h⌧1 ; '1i and P ` v2 # d2) h⌧2 ; '2i and

moreover ⌧1 v ⌧ , ⌧2 v ⌧ and '1 &'2 v '.

Why is Lemma 4.4 important? Consider the following

let x = v in case x 3 of (y,z) -> x 4

HSIM1
✏ / ✏

H1 / H2
HSIM2

H1, [x
07! Exp(e)] / H2

n � 1 H1 / H2 e1 / e2
HSIM3

H1, [x
n7! Exp(e1)] / H2, [x

n7! Exp(e2)]

H1 / H2
HSIM4

H1, [x
07! Val(v)] / H2

H1 / H2 v1 / v2
HSIM5

H1, [x
!7! Val(v1)] / H2, [x

!7! Val(v2)]

SSIM1
✏ / ✏

S1 / S2
SSIM2

(#(x , 1) : S1) / S2

S1 / S2
SSIM3

(#(x ,!) : S1) / (#(x ,!) : S2)

S1 / S2
SSIM4

(• y) : S1 / (• y) : S2

e1 / e2 S1 / S2
SSIM5

((x , y) ! e1) : S1 / ((x , y) ! e2) : S2

Figure 7: Auxiliary simulation relation (heaps and stacks)

The demand exercised on x from the body of the let-binding will
be C

1(U)&C
1(U) = C

!(U) and hence the value v will be
checked against this demand (using the LETUP rule), unleashing
an environment '. However, after substituting v in the body (which
is ultimately what call-by-need will do) we will have checked it
against C 1(U) and C

1(U) independently, unleashing '1 and '2

in each call site. Lemma 4.4 ensures that reduction never increases
the demand on the free variables of the environment, and hence
safety is not compromised. It is precisely the proof of Lemma 4.4
that requires demand transformers to be monotone in the demand
arguments, ensured by WFTRANS.
Theorem 4.5 (Safety of analysis). If ✏ Ì e1 # HU) h⌧ ; ✏i e1

and h✏ ; e1 ; ✏i �!k hH ; e2 ; Si, then there exist H, e2 and S, such

that h✏ ; e1 ; ✏i,�!k hH ; e2 ; Si, H\ = H , S
\ = S and e

\
2 = e2.

The proof is just a combination of Lemma 4.1 and Theorem 4.2.

5. Optimisations
We discuss next the two optimisations enabled by our analysis.

5.1 Optimised allocation for thunks
We show here that for 0-annotated bindings there is no need to
allocate an entry in the heap, and for 1-annotated ones we don’t
have to emit an update frame on the stack. Within the chosen
operational model, this optimisation is of dynamic flavour so we
express this by providing a new, optimising small-step machine
for the annotated expressions. The new semantics is defined in
Figure 8. We will show that programs that can be evaluated via
the counting semantics (Figure 5) can be also evaluated via the
optimised semantics in a smaller or equal number of steps.
The proof is a simulation proof, hence we define relations between
heaps / optimised heaps, and stacks / optimised stacks that are
preserved during evaluation.

8

such that

9

hH\
, e

\
2, S

\i = hH, e2, Si

Cardinality-Enabled
Optimisations

1. Let-in floating optimisation

hH0 ; e0 ; S0i =) hH1 ; e1 ; S1i

OPT-ELETA hH ; let x
0
= e1 in e2 ; Si =) hH ; e2 ; Si

OPT-ELETU hH ; let x
n
= e1 in e2 ; Si =) hH[x

n7! Exp(e1)] ; e2 ; Si where n � 1
OPT-ELKPEM hH, [x

!7! Exp(e)] ; x ; Si =) hH ; e ; #(x ,!) : Si
OPT-ELKPEO hH, [x

17! Exp(e)] ; x ; Si =) hH ; e ; Si
OPT-ELKPV hH, [x

!7! Val(v)] ; x ; Si =) hH, [x
!7! Val(v)] ; v ; Si

OPT-EUPD hH ; v ; #(x ,!) : Si =) hH, [x
!7! Val(v)] ; v ; Si

OPT-EBETA hH ; �m
x.e ; (• y) : Si =) hH ; e[y/x] ; Si

OPT-EAPP hH ; e y ; Si =) hH ; e ; (• y) : Si
OPT-EPAIR hH ; case es of (x , y) ! er ; Si =) hH ; es ; ((x , y) ! er) : Si
OPT-EPRED hH ; (x1, x2) ; ((y1, y2) ! er) : Si =) hH ; er [x1/y1, x2/y2] ; Si

Figure 8: Optimised counting semantics

Definition 5.1 (Auxiliary /-relations). We write e1 / e2 iff e1
and e2 differ only on the �-annotations. H1 / H2 and S1 / S2 are
defined in Figure 7.
For this optimisation the annotations on �-abstractions play no role,
hence we relate any expressions that differ only on those.
Figure 7 tells us when a heap H is related with an optimised heap
Hopt with the relation H / Hopt . As we have described, there are
no 07! bindings in the optimised heap. Moreover notice that there
are no bindings of the form [x

17! Val(v)] in either the optimised
or unoptimised heap. It is easy to see why: every heap binding
starts life as [x

m7! Exp(e)]. By the time Exp(e) has become a
value Val(v), we have already used x once. Hence, if originally
m = ! then the value binding will also be ! (in the optimised or
unoptimised semantics). If it was m = 1 then it can only be 0 in the
un-optimised heap and non-existent in the optimised heap. If it was
m = 0 then no such bindings would have existed in the optimised
heap anyway.
The relation between stacks is given with S / Sopt . Rule SSIM2
ensures that there are no frames #(x , 1) in the optimised stack. In
fact during evaluation it is easy to observe that there are not going
to be any update frames #(x , 0) in the original or optimised stack.
We can now state the optimisation simulation theorem.
Theorem 5.1 (Optimised semantics). If hH1 ;e1 ;S1i / hH2 ;e2 ;S2i
and hH1 ;e1 ;S1i ,�! hH0

1 ;e
0
1 ;S

0
1i then there exists k 2 {0, 1} s.t.

hH2 ; e2 ;S2i =)k hH0
2 ; e

0
2 ;S

0
2i and hH0

1 ; e
0
1 ;S

0
1i / hH0

2 ; e
0
2 ;S

0
2i.

Notice that the counting semantics may not be able to take a
transition at some point due to the wrong non-deterministic choice
but in that case the statement of Theorem 5.1 holds trivially. Finally,
we tie together Theorems 5.1 and 4.5 to get the following result.
Theorem 5.2 (Analysis is safe for optimised semantics). If Ì e1 #
HU) h⌧ ; ✏i e1 and h✏ ; e1 ; ✏i �!n hH ; e2 ; Si then

h✏ ; e1 ; ✏i =)m hH ; e2 ; Si s. t. e
\
2 = e2, m n , and there exist

H2 and S2 s.t. H
\
2 = H and S

\
2 = S and H2 / H and S2 / S.

Theorem 5.2 says that if a program e1 evaluates in n steps to e2

in the reference semantics, then it also evaluates to the same e2

(modulo annotation) in the optimised semantics in n steps or fewer;
and the heaps and stacks are consistent. Moreover, the theorem has
informative content on infinite sequences. For example it says that
for any point in the evaluation in the reference semantics, we will
have earlier reached a corresponding intermediate configuration in
the optimised semantics with consistent heaps and stacks.

5.2 let-in floating into one-shot lambdas
As discussed in Section 2, we are interested in the particular case of
let-floating (Peyton Jones et al. 1996): moving the binder into the
body of a lambda-expression. This transformation is trivially safe,
given obvious syntactic side conditions (Moran and Sands 1999,
§4.5), however, in general, it is not beneficial. Here we describe
the conditions under which let-in floating makes things better in
terms of the length of the program execution sequence.
We start by defining let-in floating in a form of syntactic rewriting:
Definition 5.2 (let-in floating for one-shot lambdas).

let z
m1= e1 in (let f

m2= �1
x . e in e2)

=) let f
m2= �1

x . (let z
m1= e1 in e) in e2,

for any m1, m2 and z /2 FV (e2).
Next, we provide a number of definitions necessary to formulate
the so called improvement result (Moran and Sands 1999). The
improvement is formulated for closed, well-formed configurations.
For a configuration hH ; e ; Si to be closed, any free variables in H,
e and S must be contained in a union dom(H) [dom(S), where
dom(H) is a set of variables bound by a heap H, and dom(S) is a
set of variables marked for update in a stack S. A configuration is
well-formed if dom(H) and dom(S) are disjoint.
Definition 5.3 (Convergence). For a closed configuration hH;e;Si,

hH ; e ; Si +N def
= 9H0, v,N . hH ; e ; Si ,�!N hH0 ; v ; ✏i

hH ; e ; Si +N def
= 9M . hH ; e ; Si +M and M N

The following theorem shows that local let-in floating into the body
of a one-shot lambda does not make the execution longer.
Theorem 5.3 (Let-in float improvement). For any H and S, if

hH ; let z
m
= e1 in (let f

m1= �1
x . e in e2) ; Si +N

and z /2 FV (e2), then

hH ; let f
m1= �1

x . (let z
m
= e1 in e) in e2 ; Si +N .

Even though Theorem 5.3 gives a termination-dependent result, its
proof (Sergey et al. 2013) goes via a simulation argument, hence
it is possible to state the theorem in a more general way without
requiring termination.
We also expect that the improvement result extends to arbitrary
program contexts, but have not carried out the exercise.

9

hH0 ; e0 ; S0i =) hH1 ; e1 ; S1i

OPT-ELETA hH ; let x
0
= e1 in e2 ; Si =) hH ; e2 ; Si

OPT-ELETU hH ; let x
n
= e1 in e2 ; Si =) hH[x

n7! Exp(e1)] ; e2 ; Si where n � 1
OPT-ELKPEM hH, [x

!7! Exp(e)] ; x ; Si =) hH ; e ; #(x ,!) : Si
OPT-ELKPEO hH, [x

17! Exp(e)] ; x ; Si =) hH ; e ; Si
OPT-ELKPV hH, [x

!7! Val(v)] ; x ; Si =) hH, [x
!7! Val(v)] ; v ; Si

OPT-EUPD hH ; v ; #(x ,!) : Si =) hH, [x
!7! Val(v)] ; v ; Si

OPT-EBETA hH ; �m
x.e ; (• y) : Si =) hH ; e[y/x] ; Si

OPT-EAPP hH ; e y ; Si =) hH ; e ; (• y) : Si
OPT-EPAIR hH ; case es of (x , y) ! er ; Si =) hH ; es ; ((x , y) ! er) : Si
OPT-EPRED hH ; (x1, x2) ; ((y1, y2) ! er) : Si =) hH ; er [x1/y1, x2/y2] ; Si

Figure 8: Optimised counting semantics

Definition 5.1 (Auxiliary /-relations). We write e1 / e2 iff e1
and e2 differ only on the �-annotations. H1 / H2 and S1 / S2 are
defined in Figure 7.
For this optimisation the annotations on �-abstractions play no role,
hence we relate any expressions that differ only on those.
Figure 7 tells us when a heap H is related with an optimised heap
Hopt with the relation H / Hopt . As we have described, there are
no 07! bindings in the optimised heap. Moreover notice that there
are no bindings of the form [x

17! Val(v)] in either the optimised
or unoptimised heap. It is easy to see why: every heap binding
starts life as [x

m7! Exp(e)]. By the time Exp(e) has become a
value Val(v), we have already used x once. Hence, if originally
m = ! then the value binding will also be ! (in the optimised or
unoptimised semantics). If it was m = 1 then it can only be 0 in the
un-optimised heap and non-existent in the optimised heap. If it was
m = 0 then no such bindings would have existed in the optimised
heap anyway.
The relation between stacks is given with S / Sopt . Rule SSIM2
ensures that there are no frames #(x , 1) in the optimised stack. In
fact during evaluation it is easy to observe that there are not going
to be any update frames #(x , 0) in the original or optimised stack.
We can now state the optimisation simulation theorem.
Theorem 5.1 (Optimised semantics). If hH1 ;e1 ;S1i / hH2 ;e2 ;S2i
and hH1 ;e1 ;S1i ,�! hH0

1 ;e
0
1 ;S

0
1i then there exists k 2 {0, 1} s.t.

hH2 ; e2 ;S2i =)k hH0
2 ; e

0
2 ;S

0
2i and hH0

1 ; e
0
1 ;S

0
1i / hH0

2 ; e
0
2 ;S

0
2i.

Notice that the counting semantics may not be able to take a
transition at some point due to the wrong non-deterministic choice
but in that case the statement of Theorem 5.1 holds trivially. Finally,
we tie together Theorems 5.1 and 4.5 to get the following result.
Theorem 5.2 (Analysis is safe for optimised semantics). If Ì e1 #
HU) h⌧ ; ✏i e1 and h✏ ; e1 ; ✏i �!n hH ; e2 ; Si then

h✏ ; e1 ; ✏i =)m hH ; e2 ; Si s. t. e
\
2 = e2, m n , and there exist

H2 and S2 s.t. H
\
2 = H and S

\
2 = S and H2 / H and S2 / S.

Theorem 5.2 says that if a program e1 evaluates in n steps to e2

in the reference semantics, then it also evaluates to the same e2

(modulo annotation) in the optimised semantics in n steps or fewer;
and the heaps and stacks are consistent. Moreover, the theorem has
informative content on infinite sequences. For example it says that
for any point in the evaluation in the reference semantics, we will
have earlier reached a corresponding intermediate configuration in
the optimised semantics with consistent heaps and stacks.

5.2 let-in floating into one-shot lambdas
As discussed in Section 2, we are interested in the particular case of
let-floating (Peyton Jones et al. 1996): moving the binder into the
body of a lambda-expression. This transformation is trivially safe,
given obvious syntactic side conditions (Moran and Sands 1999,
§4.5), however, in general, it is not beneficial. Here we describe
the conditions under which let-in floating makes things better in
terms of the length of the program execution sequence.
We start by defining let-in floating in a form of syntactic rewriting:
Definition 5.2 (let-in floating for one-shot lambdas).

let z
m1= e1 in (let f

m2= �1
x . e in e2)

=) let f
m2= �1

x . (let z
m1= e1 in e) in e2,

for any m1, m2 and z /2 FV (e2).
Next, we provide a number of definitions necessary to formulate
the so called improvement result (Moran and Sands 1999). The
improvement is formulated for closed, well-formed configurations.
For a configuration hH ; e ; Si to be closed, any free variables in H,
e and S must be contained in a union dom(H) [dom(S), where
dom(H) is a set of variables bound by a heap H, and dom(S) is a
set of variables marked for update in a stack S. A configuration is
well-formed if dom(H) and dom(S) are disjoint.
Definition 5.3 (Convergence). For a closed configuration hH;e;Si,

hH ; e ; Si +N def
= 9H0, v,N . hH ; e ; Si ,�!N hH0 ; v ; ✏i

hH ; e ; Si +N def
= 9M . hH ; e ; Si +M and M N

The following theorem shows that local let-in floating into the body
of a one-shot lambda does not make the execution longer.
Theorem 5.3 (Let-in float improvement). For any H and S, if

hH ; let z
m
= e1 in (let f

m1= �1
x . e in e2) ; Si +N

and z /2 FV (e2), then

hH ; let f
m1= �1

x . (let z
m
= e1 in e) in e2 ; Si +N .

Even though Theorem 5.3 gives a termination-dependent result, its
proof (Sergey et al. 2013) goes via a simulation argument, hence
it is possible to state the theorem in a more general way without
requiring termination.
We also expect that the improvement result extends to arbitrary
program contexts, but have not carried out the exercise.

9

hH0 ; e0 ; S0i =) hH1 ; e1 ; S1i

OPT-ELETA hH ; let x
0
= e1 in e2 ; Si =) hH ; e2 ; Si

OPT-ELETU hH ; let x
n
= e1 in e2 ; Si =) hH[x

n7! Exp(e1)] ; e2 ; Si where n � 1
OPT-ELKPEM hH, [x

!7! Exp(e)] ; x ; Si =) hH ; e ; #(x ,!) : Si
OPT-ELKPEO hH, [x

17! Exp(e)] ; x ; Si =) hH ; e ; Si
OPT-ELKPV hH, [x

!7! Val(v)] ; x ; Si =) hH, [x
!7! Val(v)] ; v ; Si

OPT-EUPD hH ; v ; #(x ,!) : Si =) hH, [x
!7! Val(v)] ; v ; Si

OPT-EBETA hH ; �m
x.e ; (• y) : Si =) hH ; e[y/x] ; Si

OPT-EAPP hH ; e y ; Si =) hH ; e ; (• y) : Si
OPT-EPAIR hH ; case es of (x , y) ! er ; Si =) hH ; es ; ((x , y) ! er) : Si
OPT-EPRED hH ; (x1, x2) ; ((y1, y2) ! er) : Si =) hH ; er [x1/y1, x2/y2] ; Si

Figure 8: Optimised counting semantics

Definition 5.1 (Auxiliary /-relations). We write e1 / e2 iff e1
and e2 differ only on the �-annotations. H1 / H2 and S1 / S2 are
defined in Figure 7.
For this optimisation the annotations on �-abstractions play no role,
hence we relate any expressions that differ only on those.
Figure 7 tells us when a heap H is related with an optimised heap
Hopt with the relation H / Hopt . As we have described, there are
no 07! bindings in the optimised heap. Moreover notice that there
are no bindings of the form [x

17! Val(v)] in either the optimised
or unoptimised heap. It is easy to see why: every heap binding
starts life as [x

m7! Exp(e)]. By the time Exp(e) has become a
value Val(v), we have already used x once. Hence, if originally
m = ! then the value binding will also be ! (in the optimised or
unoptimised semantics). If it was m = 1 then it can only be 0 in the
un-optimised heap and non-existent in the optimised heap. If it was
m = 0 then no such bindings would have existed in the optimised
heap anyway.
The relation between stacks is given with S / Sopt . Rule SSIM2
ensures that there are no frames #(x , 1) in the optimised stack. In
fact during evaluation it is easy to observe that there are not going
to be any update frames #(x , 0) in the original or optimised stack.
We can now state the optimisation simulation theorem.
Theorem 5.1 (Optimised semantics). If hH1 ;e1 ;S1i / hH2 ;e2 ;S2i
and hH1 ;e1 ;S1i ,�! hH0

1 ;e
0
1 ;S

0
1i then there exists k 2 {0, 1} s.t.

hH2 ; e2 ;S2i =)k hH0
2 ; e

0
2 ;S

0
2i and hH0

1 ; e
0
1 ;S

0
1i / hH0

2 ; e
0
2 ;S

0
2i.

Notice that the counting semantics may not be able to take a
transition at some point due to the wrong non-deterministic choice
but in that case the statement of Theorem 5.1 holds trivially. Finally,
we tie together Theorems 5.1 and 4.5 to get the following result.
Theorem 5.2 (Analysis is safe for optimised semantics). If Ì e1 #
HU) h⌧ ; ✏i e1 and h✏ ; e1 ; ✏i �!n hH ; e2 ; Si then

h✏ ; e1 ; ✏i =)m hH ; e2 ; Si s. t. e
\
2 = e2, m n , and there exist

H2 and S2 s.t. H
\
2 = H and S

\
2 = S and H2 / H and S2 / S.

Theorem 5.2 says that if a program e1 evaluates in n steps to e2

in the reference semantics, then it also evaluates to the same e2

(modulo annotation) in the optimised semantics in n steps or fewer;
and the heaps and stacks are consistent. Moreover, the theorem has
informative content on infinite sequences. For example it says that
for any point in the evaluation in the reference semantics, we will
have earlier reached a corresponding intermediate configuration in
the optimised semantics with consistent heaps and stacks.

5.2 let-in floating into one-shot lambdas
As discussed in Section 2, we are interested in the particular case of
let-floating (Peyton Jones et al. 1996): moving the binder into the
body of a lambda-expression. This transformation is trivially safe,
given obvious syntactic side conditions (Moran and Sands 1999,
§4.5), however, in general, it is not beneficial. Here we describe
the conditions under which let-in floating makes things better in
terms of the length of the program execution sequence.
We start by defining let-in floating in a form of syntactic rewriting:
Definition 5.2 (let-in floating for one-shot lambdas).

let z
m1= e1 in (let f

m2= �1
x . e in e2)

=) let f
m2= �1

x . (let z
m1= e1 in e) in e2,

for any m1, m2 and z /2 FV (e2).
Next, we provide a number of definitions necessary to formulate
the so called improvement result (Moran and Sands 1999). The
improvement is formulated for closed, well-formed configurations.
For a configuration hH ; e ; Si to be closed, any free variables in H,
e and S must be contained in a union dom(H) [dom(S), where
dom(H) is a set of variables bound by a heap H, and dom(S) is a
set of variables marked for update in a stack S. A configuration is
well-formed if dom(H) and dom(S) are disjoint.
Definition 5.3 (Convergence). For a closed configuration hH;e;Si,

hH ; e ; Si +N def
= 9H0, v,N . hH ; e ; Si ,�!N hH0 ; v ; ✏i

hH ; e ; Si +N def
= 9M . hH ; e ; Si +M and M N

The following theorem shows that local let-in floating into the body
of a one-shot lambda does not make the execution longer.
Theorem 5.3 (Let-in float improvement). For any H and S, if

hH ; let z
m
= e1 in (let f

m1= �1
x . e in e2) ; Si +N

and z /2 FV (e2), then

hH ; let f
m1= �1

x . (let z
m
= e1 in e) in e2 ; Si +N .

Even though Theorem 5.3 gives a termination-dependent result, its
proof (Sergey et al. 2013) goes via a simulation argument, hence
it is possible to state the theorem in a more general way without
requiring termination.
We also expect that the improvement result extends to arbitrary
program contexts, but have not carried out the exercise.

9

hH0 ; e0 ; S0i =) hH1 ; e1 ; S1i

OPT-ELETA hH ; let x
0
= e1 in e2 ; Si =) hH ; e2 ; Si

OPT-ELETU hH ; let x
n
= e1 in e2 ; Si =) hH[x

n7! Exp(e1)] ; e2 ; Si where n � 1
OPT-ELKPEM hH, [x

!7! Exp(e)] ; x ; Si =) hH ; e ; #(x ,!) : Si
OPT-ELKPEO hH, [x

17! Exp(e)] ; x ; Si =) hH ; e ; Si
OPT-ELKPV hH, [x

!7! Val(v)] ; x ; Si =) hH, [x
!7! Val(v)] ; v ; Si

OPT-EUPD hH ; v ; #(x ,!) : Si =) hH, [x
!7! Val(v)] ; v ; Si

OPT-EBETA hH ; �m
x.e ; (• y) : Si =) hH ; e[y/x] ; Si

OPT-EAPP hH ; e y ; Si =) hH ; e ; (• y) : Si
OPT-EPAIR hH ; case es of (x , y) ! er ; Si =) hH ; es ; ((x , y) ! er) : Si
OPT-EPRED hH ; (x1, x2) ; ((y1, y2) ! er) : Si =) hH ; er [x1/y1, x2/y2] ; Si

Figure 8: Optimised counting semantics

Definition 5.1 (Auxiliary /-relations). We write e1 / e2 iff e1
and e2 differ only on the �-annotations. H1 / H2 and S1 / S2 are
defined in Figure 7.
For this optimisation the annotations on �-abstractions play no role,
hence we relate any expressions that differ only on those.
Figure 7 tells us when a heap H is related with an optimised heap
Hopt with the relation H / Hopt . As we have described, there are
no 07! bindings in the optimised heap. Moreover notice that there
are no bindings of the form [x

17! Val(v)] in either the optimised
or unoptimised heap. It is easy to see why: every heap binding
starts life as [x

m7! Exp(e)]. By the time Exp(e) has become a
value Val(v), we have already used x once. Hence, if originally
m = ! then the value binding will also be ! (in the optimised or
unoptimised semantics). If it was m = 1 then it can only be 0 in the
un-optimised heap and non-existent in the optimised heap. If it was
m = 0 then no such bindings would have existed in the optimised
heap anyway.
The relation between stacks is given with S / Sopt . Rule SSIM2
ensures that there are no frames #(x , 1) in the optimised stack. In
fact during evaluation it is easy to observe that there are not going
to be any update frames #(x , 0) in the original or optimised stack.
We can now state the optimisation simulation theorem.
Theorem 5.1 (Optimised semantics). If hH1 ;e1 ;S1i / hH2 ;e2 ;S2i
and hH1 ;e1 ;S1i ,�! hH0

1 ;e
0
1 ;S

0
1i then there exists k 2 {0, 1} s.t.

hH2 ; e2 ;S2i =)k hH0
2 ; e

0
2 ;S

0
2i and hH0

1 ; e
0
1 ;S

0
1i / hH0

2 ; e
0
2 ;S

0
2i.

Notice that the counting semantics may not be able to take a
transition at some point due to the wrong non-deterministic choice
but in that case the statement of Theorem 5.1 holds trivially. Finally,
we tie together Theorems 5.1 and 4.5 to get the following result.
Theorem 5.2 (Analysis is safe for optimised semantics). If Ì e1 #
HU) h⌧ ; ✏i e1 and h✏ ; e1 ; ✏i �!n hH ; e2 ; Si then

h✏ ; e1 ; ✏i =)m hH ; e2 ; Si s. t. e
\
2 = e2, m n , and there exist

H2 and S2 s.t. H
\
2 = H and S

\
2 = S and H2 / H and S2 / S.

Theorem 5.2 says that if a program e1 evaluates in n steps to e2

in the reference semantics, then it also evaluates to the same e2

(modulo annotation) in the optimised semantics in n steps or fewer;
and the heaps and stacks are consistent. Moreover, the theorem has
informative content on infinite sequences. For example it says that
for any point in the evaluation in the reference semantics, we will
have earlier reached a corresponding intermediate configuration in
the optimised semantics with consistent heaps and stacks.

5.2 let-in floating into one-shot lambdas
As discussed in Section 2, we are interested in the particular case of
let-floating (Peyton Jones et al. 1996): moving the binder into the
body of a lambda-expression. This transformation is trivially safe,
given obvious syntactic side conditions (Moran and Sands 1999,
§4.5), however, in general, it is not beneficial. Here we describe
the conditions under which let-in floating makes things better in
terms of the length of the program execution sequence.
We start by defining let-in floating in a form of syntactic rewriting:
Definition 5.2 (let-in floating for one-shot lambdas).

let z
m1= e1 in (let f

m2= �1
x . e in e2)

=) let f
m2= �1

x . (let z
m1= e1 in e) in e2,

for any m1, m2 and z /2 FV (e2).
Next, we provide a number of definitions necessary to formulate
the so called improvement result (Moran and Sands 1999). The
improvement is formulated for closed, well-formed configurations.
For a configuration hH ; e ; Si to be closed, any free variables in H,
e and S must be contained in a union dom(H) [dom(S), where
dom(H) is a set of variables bound by a heap H, and dom(S) is a
set of variables marked for update in a stack S. A configuration is
well-formed if dom(H) and dom(S) are disjoint.
Definition 5.3 (Convergence). For a closed configuration hH;e;Si,

hH ; e ; Si +N def
= 9H0, v,N . hH ; e ; Si ,�!N hH0 ; v ; ✏i

hH ; e ; Si +N def
= 9M . hH ; e ; Si +M and M N

The following theorem shows that local let-in floating into the body
of a one-shot lambda does not make the execution longer.
Theorem 5.3 (Let-in float improvement). For any H and S, if

hH ; let z
m
= e1 in (let f

m1= �1
x . e in e2) ; Si +N

and z /2 FV (e2), then

hH ; let f
m1= �1

x . (let z
m
= e1 in e) in e2 ; Si +N .

Even though Theorem 5.3 gives a termination-dependent result, its
proof (Sergey et al. 2013) goes via a simulation argument, hence
it is possible to state the theorem in a more general way without
requiring termination.
We also expect that the improvement result extends to arbitrary
program contexts, but have not carried out the exercise.

9

Improvement Theorem 1

Let-in floating
does not increase the number

of execution steps.

For any H and S, if

hH0 ; e0 ; S0i =) hH1 ; e1 ; S1i

OPT-ELETA hH ; let x
0
= e1 in e2 ; Si =) hH ; e2 ; Si

OPT-ELETU hH ; let x
n
= e1 in e2 ; Si =) hH[x

n7! Exp(e1)] ; e2 ; Si where n � 1
OPT-ELKPEM hH, [x

!7! Exp(e)] ; x ; Si =) hH ; e ; #(x ,!) : Si
OPT-ELKPEO hH, [x

17! Exp(e)] ; x ; Si =) hH ; e ; Si
OPT-ELKPV hH, [x

!7! Val(v)] ; x ; Si =) hH, [x
!7! Val(v)] ; v ; Si

OPT-EUPD hH ; v ; #(x ,!) : Si =) hH, [x
!7! Val(v)] ; v ; Si

OPT-EBETA hH ; �m
x.e ; (• y) : Si =) hH ; e[y/x] ; Si

OPT-EAPP hH ; e y ; Si =) hH ; e ; (• y) : Si
OPT-EPAIR hH ; case es of (x , y) ! er ; Si =) hH ; es ; ((x , y) ! er) : Si
OPT-EPRED hH ; (x1, x2) ; ((y1, y2) ! er) : Si =) hH ; er [x1/y1, x2/y2] ; Si

Figure 8: Optimised counting semantics

Definition 5.1 (Auxiliary /-relations). We write e1 / e2 iff e1
and e2 differ only on the �-annotations. H1 / H2 and S1 / S2 are
defined in Figure 7.
For this optimisation the annotations on �-abstractions play no role,
hence we relate any expressions that differ only on those.
Figure 7 tells us when a heap H is related with an optimised heap
Hopt with the relation H / Hopt . As we have described, there are
no 07! bindings in the optimised heap. Moreover notice that there
are no bindings of the form [x

17! Val(v)] in either the optimised
or unoptimised heap. It is easy to see why: every heap binding
starts life as [x

m7! Exp(e)]. By the time Exp(e) has become a
value Val(v), we have already used x once. Hence, if originally
m = ! then the value binding will also be ! (in the optimised or
unoptimised semantics). If it was m = 1 then it can only be 0 in the
un-optimised heap and non-existent in the optimised heap. If it was
m = 0 then no such bindings would have existed in the optimised
heap anyway.
The relation between stacks is given with S / Sopt . Rule SSIM2
ensures that there are no frames #(x , 1) in the optimised stack. In
fact during evaluation it is easy to observe that there are not going
to be any update frames #(x , 0) in the original or optimised stack.
We can now state the optimisation simulation theorem.
Theorem 5.1 (Optimised semantics). If hH1 ;e1 ;S1i / hH2 ;e2 ;S2i
and hH1 ;e1 ;S1i ,�! hH0

1 ;e
0
1 ;S

0
1i then there exists k 2 {0, 1} s.t.

hH2 ; e2 ;S2i =)k hH0
2 ; e

0
2 ;S

0
2i and hH0

1 ; e
0
1 ;S

0
1i / hH0

2 ; e
0
2 ;S

0
2i.

Notice that the counting semantics may not be able to take a
transition at some point due to the wrong non-deterministic choice
but in that case the statement of Theorem 5.1 holds trivially. Finally,
we tie together Theorems 5.1 and 4.5 to get the following result.
Theorem 5.2 (Analysis is safe for optimised semantics). If Ì e1 #
HU) h⌧ ; ✏i e1 and h✏ ; e1 ; ✏i �!n hH ; e2 ; Si then

h✏ ; e1 ; ✏i =)m hH ; e2 ; Si s. t. e
\
2 = e2, m n , and there exist

H2 and S2 s.t. H
\
2 = H and S

\
2 = S and H2 / H and S2 / S.

Theorem 5.2 says that if a program e1 evaluates in n steps to e2

in the reference semantics, then it also evaluates to the same e2

(modulo annotation) in the optimised semantics in n steps or fewer;
and the heaps and stacks are consistent. Moreover, the theorem has
informative content on infinite sequences. For example it says that
for any point in the evaluation in the reference semantics, we will
have earlier reached a corresponding intermediate configuration in
the optimised semantics with consistent heaps and stacks.

5.2 let-in floating into one-shot lambdas
As discussed in Section 2, we are interested in the particular case of
let-floating (Peyton Jones et al. 1996): moving the binder into the
body of a lambda-expression. This transformation is trivially safe,
given obvious syntactic side conditions (Moran and Sands 1999,
§4.5), however, in general, it is not beneficial. Here we describe
the conditions under which let-in floating makes things better in
terms of the length of the program execution sequence.
We start by defining let-in floating in a form of syntactic rewriting:
Definition 5.2 (let-in floating for one-shot lambdas).

let z
m1= e1 in (let f

m2= �1
x . e in e2)

=) let f
m2= �1

x . (let z
m1= e1 in e) in e2,

for any m1, m2 and z /2 FV (e2).
Next, we provide a number of definitions necessary to formulate
the so called improvement result (Moran and Sands 1999). The
improvement is formulated for closed, well-formed configurations.
For a configuration hH ; e ; Si to be closed, any free variables in H,
e and S must be contained in a union dom(H) [dom(S), where
dom(H) is a set of variables bound by a heap H, and dom(S) is a
set of variables marked for update in a stack S. A configuration is
well-formed if dom(H) and dom(S) are disjoint.
Definition 5.3 (Convergence). For a closed configuration hH;e;Si,

hH ; e ; Si +N def
= 9H0, v,N . hH ; e ; Si ,�!N hH0 ; v ; ✏i

hH ; e ; Si +N def
= 9M . hH ; e ; Si +M and M N

The following theorem shows that local let-in floating into the body
of a one-shot lambda does not make the execution longer.
Theorem 5.3 (Let-in float improvement). For any H and S, if

hH ; let z
m
= e1 in (let f

m1= �1
x . e in e2) ; Si +N

and z /2 FV (e2), then

hH ; let f
m1= �1

x . (let z
m
= e1 in e) in e2 ; Si +N .

Even though Theorem 5.3 gives a termination-dependent result, its
proof (Sergey et al. 2013) goes via a simulation argument, hence
it is possible to state the theorem in a more general way without
requiring termination.
We also expect that the improvement result extends to arbitrary
program contexts, but have not carried out the exercise.

9

and

hH0 ; e0 ; S0i =) hH1 ; e1 ; S1i

OPT-ELETA hH ; let x
0
= e1 in e2 ; Si =) hH ; e2 ; Si

OPT-ELETU hH ; let x
n
= e1 in e2 ; Si =) hH[x

n7! Exp(e1)] ; e2 ; Si where n � 1
OPT-ELKPEM hH, [x

!7! Exp(e)] ; x ; Si =) hH ; e ; #(x ,!) : Si
OPT-ELKPEO hH, [x

17! Exp(e)] ; x ; Si =) hH ; e ; Si
OPT-ELKPV hH, [x

!7! Val(v)] ; x ; Si =) hH, [x
!7! Val(v)] ; v ; Si

OPT-EUPD hH ; v ; #(x ,!) : Si =) hH, [x
!7! Val(v)] ; v ; Si

OPT-EBETA hH ; �m
x.e ; (• y) : Si =) hH ; e[y/x] ; Si

OPT-EAPP hH ; e y ; Si =) hH ; e ; (• y) : Si
OPT-EPAIR hH ; case es of (x , y) ! er ; Si =) hH ; es ; ((x , y) ! er) : Si
OPT-EPRED hH ; (x1, x2) ; ((y1, y2) ! er) : Si =) hH ; er [x1/y1, x2/y2] ; Si

Figure 8: Optimised counting semantics

Definition 5.1 (Auxiliary /-relations). We write e1 / e2 iff e1
and e2 differ only on the �-annotations. H1 / H2 and S1 / S2 are
defined in Figure 7.
For this optimisation the annotations on �-abstractions play no role,
hence we relate any expressions that differ only on those.
Figure 7 tells us when a heap H is related with an optimised heap
Hopt with the relation H / Hopt . As we have described, there are
no 07! bindings in the optimised heap. Moreover notice that there
are no bindings of the form [x

17! Val(v)] in either the optimised
or unoptimised heap. It is easy to see why: every heap binding
starts life as [x

m7! Exp(e)]. By the time Exp(e) has become a
value Val(v), we have already used x once. Hence, if originally
m = ! then the value binding will also be ! (in the optimised or
unoptimised semantics). If it was m = 1 then it can only be 0 in the
un-optimised heap and non-existent in the optimised heap. If it was
m = 0 then no such bindings would have existed in the optimised
heap anyway.
The relation between stacks is given with S / Sopt . Rule SSIM2
ensures that there are no frames #(x , 1) in the optimised stack. In
fact during evaluation it is easy to observe that there are not going
to be any update frames #(x , 0) in the original or optimised stack.
We can now state the optimisation simulation theorem.
Theorem 5.1 (Optimised semantics). If hH1 ;e1 ;S1i / hH2 ;e2 ;S2i
and hH1 ;e1 ;S1i ,�! hH0

1 ;e
0
1 ;S

0
1i then there exists k 2 {0, 1} s.t.

hH2 ; e2 ;S2i =)k hH0
2 ; e

0
2 ;S

0
2i and hH0

1 ; e
0
1 ;S

0
1i / hH0

2 ; e
0
2 ;S

0
2i.

Notice that the counting semantics may not be able to take a
transition at some point due to the wrong non-deterministic choice
but in that case the statement of Theorem 5.1 holds trivially. Finally,
we tie together Theorems 5.1 and 4.5 to get the following result.
Theorem 5.2 (Analysis is safe for optimised semantics). If Ì e1 #
HU) h⌧ ; ✏i e1 and h✏ ; e1 ; ✏i �!n hH ; e2 ; Si then

h✏ ; e1 ; ✏i =)m hH ; e2 ; Si s. t. e
\
2 = e2, m n , and there exist

H2 and S2 s.t. H
\
2 = H and S

\
2 = S and H2 / H and S2 / S.

Theorem 5.2 says that if a program e1 evaluates in n steps to e2

in the reference semantics, then it also evaluates to the same e2

(modulo annotation) in the optimised semantics in n steps or fewer;
and the heaps and stacks are consistent. Moreover, the theorem has
informative content on infinite sequences. For example it says that
for any point in the evaluation in the reference semantics, we will
have earlier reached a corresponding intermediate configuration in
the optimised semantics with consistent heaps and stacks.

5.2 let-in floating into one-shot lambdas
As discussed in Section 2, we are interested in the particular case of
let-floating (Peyton Jones et al. 1996): moving the binder into the
body of a lambda-expression. This transformation is trivially safe,
given obvious syntactic side conditions (Moran and Sands 1999,
§4.5), however, in general, it is not beneficial. Here we describe
the conditions under which let-in floating makes things better in
terms of the length of the program execution sequence.
We start by defining let-in floating in a form of syntactic rewriting:
Definition 5.2 (let-in floating for one-shot lambdas).

let z
m1= e1 in (let f

m2= �1
x . e in e2)

=) let f
m2= �1

x . (let z
m1= e1 in e) in e2,

for any m1, m2 and z /2 FV (e2).
Next, we provide a number of definitions necessary to formulate
the so called improvement result (Moran and Sands 1999). The
improvement is formulated for closed, well-formed configurations.
For a configuration hH ; e ; Si to be closed, any free variables in H,
e and S must be contained in a union dom(H) [dom(S), where
dom(H) is a set of variables bound by a heap H, and dom(S) is a
set of variables marked for update in a stack S. A configuration is
well-formed if dom(H) and dom(S) are disjoint.
Definition 5.3 (Convergence). For a closed configuration hH;e;Si,

hH ; e ; Si +N def
= 9H0, v,N . hH ; e ; Si ,�!N hH0 ; v ; ✏i

hH ; e ; Si +N def
= 9M . hH ; e ; Si +M and M N

The following theorem shows that local let-in floating into the body
of a one-shot lambda does not make the execution longer.
Theorem 5.3 (Let-in float improvement). For any H and S, if

hH ; let z
m
= e1 in (let f

m1= �1
x . e in e2) ; Si +N

and z /2 FV (e2), then

hH ; let f
m1= �1

x . (let z
m
= e1 in e) in e2 ; Si +N .

Even though Theorem 5.3 gives a termination-dependent result, its
proof (Sergey et al. 2013) goes via a simulation argument, hence
it is possible to state the theorem in a more general way without
requiring termination.
We also expect that the improvement result extends to arbitrary
program contexts, but have not carried out the exercise.

9

hH0 ; e0 ; S0i =) hH1 ; e1 ; S1i

OPT-ELETA hH ; let x
0
= e1 in e2 ; Si =) hH ; e2 ; Si

OPT-ELETU hH ; let x
n
= e1 in e2 ; Si =) hH[x

n7! Exp(e1)] ; e2 ; Si where n � 1
OPT-ELKPEM hH, [x

!7! Exp(e)] ; x ; Si =) hH ; e ; #(x ,!) : Si
OPT-ELKPEO hH, [x

17! Exp(e)] ; x ; Si =) hH ; e ; Si
OPT-ELKPV hH, [x

!7! Val(v)] ; x ; Si =) hH, [x
!7! Val(v)] ; v ; Si

OPT-EUPD hH ; v ; #(x ,!) : Si =) hH, [x
!7! Val(v)] ; v ; Si

OPT-EBETA hH ; �m
x.e ; (• y) : Si =) hH ; e[y/x] ; Si

OPT-EAPP hH ; e y ; Si =) hH ; e ; (• y) : Si
OPT-EPAIR hH ; case es of (x , y) ! er ; Si =) hH ; es ; ((x , y) ! er) : Si
OPT-EPRED hH ; (x1, x2) ; ((y1, y2) ! er) : Si =) hH ; er [x1/y1, x2/y2] ; Si

Figure 8: Optimised counting semantics

Definition 5.1 (Auxiliary /-relations). We write e1 / e2 iff e1
and e2 differ only on the �-annotations. H1 / H2 and S1 / S2 are
defined in Figure 7.
For this optimisation the annotations on �-abstractions play no role,
hence we relate any expressions that differ only on those.
Figure 7 tells us when a heap H is related with an optimised heap
Hopt with the relation H / Hopt . As we have described, there are
no 07! bindings in the optimised heap. Moreover notice that there
are no bindings of the form [x

17! Val(v)] in either the optimised
or unoptimised heap. It is easy to see why: every heap binding
starts life as [x

m7! Exp(e)]. By the time Exp(e) has become a
value Val(v), we have already used x once. Hence, if originally
m = ! then the value binding will also be ! (in the optimised or
unoptimised semantics). If it was m = 1 then it can only be 0 in the
un-optimised heap and non-existent in the optimised heap. If it was
m = 0 then no such bindings would have existed in the optimised
heap anyway.
The relation between stacks is given with S / Sopt . Rule SSIM2
ensures that there are no frames #(x , 1) in the optimised stack. In
fact during evaluation it is easy to observe that there are not going
to be any update frames #(x , 0) in the original or optimised stack.
We can now state the optimisation simulation theorem.
Theorem 5.1 (Optimised semantics). If hH1 ;e1 ;S1i / hH2 ;e2 ;S2i
and hH1 ;e1 ;S1i ,�! hH0

1 ;e
0
1 ;S

0
1i then there exists k 2 {0, 1} s.t.

hH2 ; e2 ;S2i =)k hH0
2 ; e

0
2 ;S

0
2i and hH0

1 ; e
0
1 ;S

0
1i / hH0

2 ; e
0
2 ;S

0
2i.

Notice that the counting semantics may not be able to take a
transition at some point due to the wrong non-deterministic choice
but in that case the statement of Theorem 5.1 holds trivially. Finally,
we tie together Theorems 5.1 and 4.5 to get the following result.
Theorem 5.2 (Analysis is safe for optimised semantics). If Ì e1 #
HU) h⌧ ; ✏i e1 and h✏ ; e1 ; ✏i �!n hH ; e2 ; Si then

h✏ ; e1 ; ✏i =)m hH ; e2 ; Si s. t. e
\
2 = e2, m n , and there exist

H2 and S2 s.t. H
\
2 = H and S

\
2 = S and H2 / H and S2 / S.

Theorem 5.2 says that if a program e1 evaluates in n steps to e2

in the reference semantics, then it also evaluates to the same e2

(modulo annotation) in the optimised semantics in n steps or fewer;
and the heaps and stacks are consistent. Moreover, the theorem has
informative content on infinite sequences. For example it says that
for any point in the evaluation in the reference semantics, we will
have earlier reached a corresponding intermediate configuration in
the optimised semantics with consistent heaps and stacks.

5.2 let-in floating into one-shot lambdas
As discussed in Section 2, we are interested in the particular case of
let-floating (Peyton Jones et al. 1996): moving the binder into the
body of a lambda-expression. This transformation is trivially safe,
given obvious syntactic side conditions (Moran and Sands 1999,
§4.5), however, in general, it is not beneficial. Here we describe
the conditions under which let-in floating makes things better in
terms of the length of the program execution sequence.
We start by defining let-in floating in a form of syntactic rewriting:
Definition 5.2 (let-in floating for one-shot lambdas).

let z
m1= e1 in (let f

m2= �1
x . e in e2)

=) let f
m2= �1

x . (let z
m1= e1 in e) in e2,

for any m1, m2 and z /2 FV (e2).
Next, we provide a number of definitions necessary to formulate
the so called improvement result (Moran and Sands 1999). The
improvement is formulated for closed, well-formed configurations.
For a configuration hH ; e ; Si to be closed, any free variables in H,
e and S must be contained in a union dom(H) [dom(S), where
dom(H) is a set of variables bound by a heap H, and dom(S) is a
set of variables marked for update in a stack S. A configuration is
well-formed if dom(H) and dom(S) are disjoint.
Definition 5.3 (Convergence). For a closed configuration hH;e;Si,

hH ; e ; Si +N def
= 9H0, v,N . hH ; e ; Si ,�!N hH0 ; v ; ✏i

hH ; e ; Si +N def
= 9M . hH ; e ; Si +M and M N

The following theorem shows that local let-in floating into the body
of a one-shot lambda does not make the execution longer.
Theorem 5.3 (Let-in float improvement). For any H and S, if

hH ; let z
m
= e1 in (let f

m1= �1
x . e in e2) ; Si +N

and z /2 FV (e2), then

hH ; let f
m1= �1

x . (let z
m
= e1 in e) in e2 ; Si +N .

Even though Theorem 5.3 gives a termination-dependent result, its
proof (Sergey et al. 2013) goes via a simulation argument, hence
it is possible to state the theorem in a more general way without
requiring termination.
We also expect that the improvement result extends to arbitrary
program contexts, but have not carried out the exercise.

9

then

where means “terminates in N steps”.� +N

Improvement Theorem 1

2. Smart Execution

e1

Optimised CBN Machine

• 1-annotated bindings are not memoised;

• 0-annotated bindings are skipped.

hH1, , S1ie1 hHn, en, Sni. . .=) =)

Optimising semantics
works faster on elaborated expressions

and produces coherent results.

Improvement Theorem 2

If ✏ Ì e1 # U) h⌧, ✏i e1

P ::= ✏ | P , (x :%) % 2 d 7! h⌧ ; 'i

P ` e # d) h⌧ ; 'i

(x : %) 2 P h⌧ ; 'i = %(d)
TVARDN

P ` x # d) h⌧ ; '&(x :1⇤d)i

x /2 dom(P)
TVARUP

P ` x # d) h• ; (x :1⇤d)i

d v C
n (de) m � n P ` e # de) h⌧ ; 'i

TLAM
P ` �m

x.e # d) h'(x) ! ⌧ ; n⇤('\x)i

d v HU

TLAMHU
P ` �m

x.e # d) h⌧ ; ✏i

P ` e1 # C
1(d)) h⌧1 ; '1i

⌧1 � d
†
2 ! ⌧r P

⇤̀
y # d

†
2) '2

TAPP
P ` e1 y # d) h⌧r ; '1 &'2i

d v U (d†
1 , d

†
2) P

⇤̀
x1 # d

†
1) '1 P

⇤̀
x2 # d

†
2) '2

TPAIR
P ` (x1, x2) # d) h• ; '1 &'2i

P ` er # d) h⌧ ; 'r i
P ` es # U ('r (x),'r (y))) h ; 'si TCASE

P ` case es of (x , y) ! er # d) h⌧ ; 'r\x ,y &'si

m � µ('2(x)) '2(x) v n ⇤ d1
P ` e1 # d1) h⌧1 ; '1i P

t̀
e1 : %

P , (x :%) ` e2 # d) h⌧ ; '2i TLETDN
P ` let x

m
= e1 in e2 # d) h⌧ ; ('2\x)i

m � n P ` e2 # d) h⌧ ; '2i
n⇤dx = '2(x) P ` e1 # dx) h ; '1i TLETUP

P ` let x
m
= e1 in e2 # d) h⌧ ; '1 &('2\x)i

P ` e2 # d) h⌧ ; '2i A = '2(x)
TLETUPABS

P ` let x
m
= e1 in e2 # d) h⌧ ; '1 &('2\x)i

P
⇤̀
x # d

†) '

TABS
P

⇤̀
x # A) ✏

P ` x # d) h⌧ ; 'i
TMULTI

P
⇤̀
x # n⇤d) n⇤'

P
t̀
e : %

8d1, d2.d1 v d2 =) %(d1) v %(d2)
8d ,', ⌧.(P ` e # d) h⌧ ; 'i) =) h⌧ ; 'i v %(d)

WFTRANS
P `t e : %

Figure 6: Well-annotated terms

Lemma 4.4 (Value demand splitting). If P ` v # (d1 & d2))
h⌧ ; 'i then there exists a split split(v) = (v1, v2) such that:

P ` v1 # d1) h⌧1 ; '1i and P ` v2 # d2) h⌧2 ; '2i and

moreover ⌧1 v ⌧ , ⌧2 v ⌧ and '1 &'2 v '.

Why is Lemma 4.4 important? Consider the following

let x = v in case x 3 of (y,z) -> x 4

HSIM1
✏ / ✏

H1 / H2
HSIM2

H1, [x
07! Exp(e)] / H2

n � 1 H1 / H2 e1 / e2
HSIM3

H1, [x
n7! Exp(e1)] / H2, [x

n7! Exp(e2)]

H1 / H2
HSIM4

H1, [x
07! Val(v)] / H2

H1 / H2 v1 / v2
HSIM5

H1, [x
!7! Val(v1)] / H2, [x

!7! Val(v2)]

SSIM1
✏ / ✏

S1 / S2
SSIM2

(#(x , 1) : S1) / S2

S1 / S2
SSIM3

(#(x ,!) : S1) / (#(x ,!) : S2)

S1 / S2
SSIM4

(• y) : S1 / (• y) : S2

e1 / e2 S1 / S2
SSIM5

((x , y) ! e1) : S1 / ((x , y) ! e2) : S2

Figure 7: Auxiliary simulation relation (heaps and stacks)

The demand exercised on x from the body of the let-binding will
be C

1(U)&C
1(U) = C

!(U) and hence the value v will be
checked against this demand (using the LETUP rule), unleashing
an environment '. However, after substituting v in the body (which
is ultimately what call-by-need will do) we will have checked it
against C 1(U) and C

1(U) independently, unleashing '1 and '2

in each call site. Lemma 4.4 ensures that reduction never increases
the demand on the free variables of the environment, and hence
safety is not compromised. It is precisely the proof of Lemma 4.4
that requires demand transformers to be monotone in the demand
arguments, ensured by WFTRANS.
Theorem 4.5 (Safety of analysis). If ✏ Ì e1 # HU) h⌧ ; ✏i e1

and h✏ ; e1 ; ✏i �!k hH ; e2 ; Si, then there exist H, e2 and S, such

that h✏ ; e1 ; ✏i,�!k hH ; e2 ; Si, H\ = H , S
\ = S and e

\
2 = e2.

The proof is just a combination of Lemma 4.1 and Theorem 4.2.

5. Optimisations
We discuss next the two optimisations enabled by our analysis.

5.1 Optimised allocation for thunks
We show here that for 0-annotated bindings there is no need to
allocate an entry in the heap, and for 1-annotated ones we don’t
have to emit an update frame on the stack. Within the chosen
operational model, this optimisation is of dynamic flavour so we
express this by providing a new, optimising small-step machine
for the annotated expressions. The new semantics is defined in
Figure 8. We will show that programs that can be evaluated via
the counting semantics (Figure 5) can be also evaluated via the
optimised semantics in a smaller or equal number of steps.
The proof is a simulation proof, hence we define relations between
heaps / optimised heaps, and stacks / optimised stacks that are
preserved during evaluation.

8

and
then

such that m k

and hH\
, e

\
2, S

\i = hH, e2, Si

h✏, e1, ✏i =)m hgc(H), e2, gc(S)i

Improvement Theorem 2

Implementation
and

Evaluation

• Haskell Source

• Core

• Spineless Tagless G-Machine

• C--

• C / Machine Code / LLVM Code

A number of Intermediate Languages

Most of interesting optimizations
happen here

GHC Compilation Pipeline

• A tiny language, to which Haskell sources are de-sugared;

• Based on explicitly typed System F with type equality coercions;

• Used as a base platform for analyses and optimisations;

• All names are fully-qualified;

• if-then-else is compiled to case-expressions;

• Variables have additional metadata;

• Type class constraints are compiled into record parameters.

GHC Core

data Expr b
 = Var Id
 | Lit Literal
 | App (Expr b) (Expr b)
 | Lam b (Expr b)
 | Let (Bind b) (Expr b)
 | Case (Expr b) b Type [Alt b]
 | Cast (Expr b) Coercion
 | Tick (Tickish Id) (Expr b)
 | Type Type
 | Coercion Coercion

data Bind b = NonRec b (Expr b)
 | Rec [(b, (Expr b))]

type Alt b = (AltCon, [b], Expr b)

data AltCon
 = DataAlt DataCon
 | LitAlt Literal
 | DEFAULT

Core Syntax

> ghc -ddump-ds Program.hs

Desugared Core

> ghc -O2 -ddump-stranal Program.hs

Core with Strictness Annotations

> ghc -O2 -ddump-worker-wrapper Program.hs

Core after Worker/Wrapper Split

How to See Core

Try it on

module Program where

squash f = f 42

costly x = product [1..x]

foo xs = squash (\n -> sum (map (+ n) (map costly xs)))

• The analysis and optimisations are implemented
in Glasgow Haskell Compiler (GHC v7.8 and newer):
http://github.com/ghc/ghc

• Added 250 LOC to 140 KLOC compiler;

• Runs simultaneously with the strictness analyser;

• Evaluated on
• nofib benchmark suite,
• various hackage libraries,
• the Benchmark Game programs,
• GHC itself.

http://github.com/ghc/ghc

6. Implementation
We have implemented the cardinality analyser by extending the de-
mand analysis machinery of the Glasgow Haskell Compiler, avail-
able from its open-source repository.2 We briefly summarise some
implementation specifics in this section.

6.1 Analysis
The implementation of the analysis was straightforward, because
GHC’s existing strictness analyser is already cast as a backwards
analysis, exactly like our new cardinality analysis. So the existing
analyser worked unchanged; all that was required was to enrich
the domains over which the analyser works.3 In total, the analyser
increased from 900 lines of code to 1,140 lines, an extremely
modest change.

We run the analysis twice, once in the middle of the optimisation
pipeline, and once near the end. The purpose of the first run is to
expose one-shot lambdas, which in turn enable a cascade of sub-
sequent transformations (Section 6.3). The second analysis finds
the single-entry thunks, which are exploited by the code genera-
tor. This second analysis is performed very late in the pipeline (a)
so that it sees the result of all previous inlining and optimisation
and (b) because the single-entry thunk information is not robust to
certain other transformations (Section 6.4).

6.2 Absence
GHC exploits absence in the worker/wrapper split, as described in
Section 2.3: absent arguments are not passed from the wrapper to
the worker.

6.3 One-shot lambdas
As shown in Section 5.2, there is no run-time payoff for one-shot
lambdas. Rather, the information enables some important compile-
time transformations. Specifically, consider

let x = costly v in . . . (�y. . . . x . . .) . . .

If the �y is a one-shot lambda, the binding for x can be floated
inside the lambda, without risk of duplicating the computation of
costly. Once the binding for x is inside the �y , several other
improvements may happen:

• It may be inlined at x ’s use site, perhaps entirely eliminating
the allocation of a thunk for x .

• It may enable a rewrite rule (eg foldr/build fusion) to fire.
• It may allow two lambdas to be replaced by one. For example

f = �v. let x = costly v in�y. . . . x . . .
=) f = �v.�y. . . . (costly v) . . .

The latter produces one function with two arguments, rather
than a curried function that returns a heap-allocated lambda
(Marlow and Peyton Jones 2006).

6.4 Single-entry thunks
The code that GHC compiles for a thunk begins by pushing an up-

date frame on the stack, which includes a pointer to the thunk. Then
the code for the thunk is executed. When evaluation is complete,
the value is returned, and the update frame overwrites the thunk
with an indirection to the values (Peyton Jones 1992). It is easy to
modify this mechanism to take advantage of single-entry thunks:
we do not generate the push-update-frame code for single-entry

2 http://github.com/ghc/ghc
3 This claim is true in spirit, but in practice we substantially refactored the
existing analyser when adding usage cardinalities.

Program Synt. �1 Synt. Thnk1 RT Thnk1

anna 4.0% 7.2% 2.9%
bspt 5.0% 15.4% 1.5%
cacheprof 7.6% 11.9% 5.1%
calendar 5.7% 0.0% 0.2%
constraints 2.0% 3.2% 4.5%
cryptarithm2 0.6% 3.0% 74.0%
gcd 12.5% 0.0% 0.0%
gen regexps 5.6% 0.0% 0.2%
hpg 5.2% 0.0% 4.1%
integer 8.3% 0.0% 0.0%
life 3.2% 0.0% 1.8%
mkhprog 27.4% 20.8% 5.8%
nucleic2 3.5% 3.1% 3.2%
partstof 5.8% 10.7% 0.1%
sphere 7.8% 6.2% 20.0%
... and 72 more programs
Arithmetic mean 10.3% 12.6% 5.5%

Table 1. Analysis results for nofib: ratios of syntactic one-shot
lambdas (Synt. �1), syntactic used-once thunks (Synt. Thnk1) and
runtime entries into single-entry thunks (RT Thnk1).

thunks. There is a modest code size saving (fewer instructions gen-
erated) and a modest runtime saving (a few store instructions saved
on thunk entry, and a few more when evaluation is complete).
Take care though! The single-entry property is not robust to
program transformation. For example, common sub-expression
elimination (CSE) can combine two single-entry thunks into one
multiple-entry one, as can this sequence of transformations:

let y
1
= e in let x = y + 0 in x ⇤ x

Identity of + =) let y
1
= e in let x = y in x ⇤ x

Inline x =) let y
1
= e in y ⇤ y Wrong!

This does not affect the formal results of the paper, but it is the rea-
son that our second run of the cardinality analysis is immediately
before code generation.

7. Evaluation
To measure the accuracy of the analysis, we counted the propor-
tion of (a) one-shot lambdas and (b) single-entry thunks. In both
cases, these percentages are of the syntactically occurring lambdas
or thunks respectively, measured over the code of the benchmark
program only, not library code. Table 1 shows the results reported
by our analysis for programs from the nofib benchmark suite (Par-
tain 1993). The numbers are quite encouraging. One-shot lambdas
account for 0-30% of all lambdas, while single-entry thunks are
0-23% of all thunks.
The static (syntactic) frequency of single-entry thunks may be very
different to their dynamic frequency in a program execution, so we
instrumented GHC to measure the latter. (We did not measure the
dynamic frequency of one-shot lambdas, because they confer no di-
rect performance benefit.) The “RT Thunk” column of Table 1 gives
the dynamic frequency of single-entry thunks in the same nofib
programs. Note that these statistics include single-entry thunks
from libraries, as well as the benchmark program code. The re-
sults vary widely. Most programs do not appear to use single-entry
thunks much, while a few use many, up to 74% for cryptarithm2.

7.1 Optimising nofib programs
In the end, of course, we seek improved runtimes, although the
benefits are likely to be modest. One-shot lambdas do not confer

10

6. Implementation
We have implemented the cardinality analyser by extending the de-
mand analysis machinery of the Glasgow Haskell Compiler, avail-
able from its open-source repository.2 We briefly summarise some
implementation specifics in this section.

6.1 Analysis
The implementation of the analysis was straightforward, because
GHC’s existing strictness analyser is already cast as a backwards
analysis, exactly like our new cardinality analysis. So the existing
analyser worked unchanged; all that was required was to enrich
the domains over which the analyser works.3 In total, the analyser
increased from 900 lines of code to 1,140 lines, an extremely
modest change.

We run the analysis twice, once in the middle of the optimisation
pipeline, and once near the end. The purpose of the first run is to
expose one-shot lambdas, which in turn enable a cascade of sub-
sequent transformations (Section 6.3). The second analysis finds
the single-entry thunks, which are exploited by the code genera-
tor. This second analysis is performed very late in the pipeline (a)
so that it sees the result of all previous inlining and optimisation
and (b) because the single-entry thunk information is not robust to
certain other transformations (Section 6.4).

6.2 Absence
GHC exploits absence in the worker/wrapper split, as described in
Section 2.3: absent arguments are not passed from the wrapper to
the worker.

6.3 One-shot lambdas
As shown in Section 5.2, there is no run-time payoff for one-shot
lambdas. Rather, the information enables some important compile-
time transformations. Specifically, consider

let x = costly v in . . . (�y. . . . x . . .) . . .

If the �y is a one-shot lambda, the binding for x can be floated
inside the lambda, without risk of duplicating the computation of
costly. Once the binding for x is inside the �y , several other
improvements may happen:

• It may be inlined at x ’s use site, perhaps entirely eliminating
the allocation of a thunk for x .

• It may enable a rewrite rule (eg foldr/build fusion) to fire.
• It may allow two lambdas to be replaced by one. For example

f = �v. let x = costly v in�y. . . . x . . .
=) f = �v.�y. . . . (costly v) . . .

The latter produces one function with two arguments, rather
than a curried function that returns a heap-allocated lambda
(Marlow and Peyton Jones 2006).

6.4 Single-entry thunks
The code that GHC compiles for a thunk begins by pushing an up-

date frame on the stack, which includes a pointer to the thunk. Then
the code for the thunk is executed. When evaluation is complete,
the value is returned, and the update frame overwrites the thunk
with an indirection to the values (Peyton Jones 1992). It is easy to
modify this mechanism to take advantage of single-entry thunks:
we do not generate the push-update-frame code for single-entry

2 http://github.com/ghc/ghc
3 This claim is true in spirit, but in practice we substantially refactored the
existing analyser when adding usage cardinalities.

Program Synt. �1 Synt. Thnk1 RT Thnk1

anna 4.0% 7.2% 2.9%
bspt 5.0% 15.4% 1.5%
cacheprof 7.6% 11.9% 5.1%
calendar 5.7% 0.0% 0.2%
constraints 2.0% 3.2% 4.5%
cryptarithm2 0.6% 3.0% 74.0%
gcd 12.5% 0.0% 0.0%
gen regexps 5.6% 0.0% 0.2%
hpg 5.2% 0.0% 4.1%
integer 8.3% 0.0% 0.0%
life 3.2% 0.0% 1.8%
mkhprog 27.4% 20.8% 5.8%
nucleic2 3.5% 3.1% 3.2%
partstof 5.8% 10.7% 0.1%
sphere 7.8% 6.2% 20.0%
... and 72 more programs
Arithmetic mean 10.3% 12.6% 5.5%

Table 1. Analysis results for nofib: ratios of syntactic one-shot
lambdas (Synt. �1), syntactic used-once thunks (Synt. Thnk1) and
runtime entries into single-entry thunks (RT Thnk1).

thunks. There is a modest code size saving (fewer instructions gen-
erated) and a modest runtime saving (a few store instructions saved
on thunk entry, and a few more when evaluation is complete).
Take care though! The single-entry property is not robust to
program transformation. For example, common sub-expression
elimination (CSE) can combine two single-entry thunks into one
multiple-entry one, as can this sequence of transformations:

let y
1
= e in let x = y + 0 in x ⇤ x

Identity of + =) let y
1
= e in let x = y in x ⇤ x

Inline x =) let y
1
= e in y ⇤ y Wrong!

This does not affect the formal results of the paper, but it is the rea-
son that our second run of the cardinality analysis is immediately
before code generation.

7. Evaluation
To measure the accuracy of the analysis, we counted the propor-
tion of (a) one-shot lambdas and (b) single-entry thunks. In both
cases, these percentages are of the syntactically occurring lambdas
or thunks respectively, measured over the code of the benchmark
program only, not library code. Table 1 shows the results reported
by our analysis for programs from the nofib benchmark suite (Par-
tain 1993). The numbers are quite encouraging. One-shot lambdas
account for 0-30% of all lambdas, while single-entry thunks are
0-23% of all thunks.
The static (syntactic) frequency of single-entry thunks may be very
different to their dynamic frequency in a program execution, so we
instrumented GHC to measure the latter. (We did not measure the
dynamic frequency of one-shot lambdas, because they confer no di-
rect performance benefit.) The “RT Thunk” column of Table 1 gives
the dynamic frequency of single-entry thunks in the same nofib
programs. Note that these statistics include single-entry thunks
from libraries, as well as the benchmark program code. The re-
sults vary widely. Most programs do not appear to use single-entry
thunks much, while a few use many, up to 74% for cryptarithm2.

7.1 Optimising nofib programs
In the end, of course, we seek improved runtimes, although the
benefits are likely to be modest. One-shot lambdas do not confer

10

* as linked and run with libraries

*

Results on nofib

Program Allocs Runtime
No hack Hack No hack Hack

anna -2.1% -0.2% +0.1% -0.0%
bspt -2.2% -0.0% -0.0% +0.0%
cacheprof -7.9% -0.6% -6.1% -5.0%
calendar -9.2% +0.2% -0.0% -0.0%
constraints -0.9% -0.0% -1.2% -0.2%
cryptarithm2 -0.3% -0.3% -2.3% -2.1%
gcd -15.5% -0.0% -0.0% +0.0%
gen regexps -1.0% -0.1% -0.0% -0.0%
hpg -2.0% -1.0% -0.1% -0.0%
integer -0.0% -0.0% -8.8% -6.6%
life -0.8% -0.0% -5.9% -1.8%
mkhprog -11.9% +0.1% -0.0% -0.0%
nucleic2 -14.1% -10.9% +0.0% +0.0%
partstof -95.5% -0.0% -0.0% -0.0%
sphere -1.5% -1.5% +0.0% -0.1%
... and 72 more programs
Min -95.5% -10.9% -28.2% -12.1%
Max +3.5% +0.5% +1.8% +2.8%
Geometric mean -6.0% -0.3% -2.2% -1.4%

Table 2. Cardinality analysis-enabled optimisations for nofib

any performance benefits directly; rather, they remove potential
obstacles from other compile-time transformations. Single-entry
thunks, on the other hand give an immediate performance benefit,
by omitting the push-update-frame code, but it is a small one.

Table 2 summarises the effect of cardinality analysis when running
the nofib suite. “Allocs” is the change in how much heap was
allocated when the program is run and “Runtime” is a change in
the actual program execution time.

In Section 2.1 we mentioned a hack, used by Gill in GHC, in which
he hard-coded the call-cardinality information for three particular
functions: build, foldr and runST. Our analysis renders this
hack redundant, as now the same results can be soundly inferred.
We therefore report two sets of results: relative to an un-hacked
baseline, and relative to a hacked baseline. In both cases binary
size of the (statically) linked binaries falls slightly but consistently
(2.0% average), which is welcome. This may be due to less push-
update-frame code being generated.

Considering allocation, the numbers relative to the non-hacked
baseline are quite encouraging, but relative to the hacked compiler
the improvements are modest: the hack was very effective! Other-
wise, only one program, nucleic2 shows a significant (11%) re-
duction in allocation, which turned out to be because a thunk was
floated inside a one-shot lambda and ended up never being allo-
cated, exactly as advertised.4

A shortcoming of nofib suite is that runtimes tend to be short and
very noisy: even with the execution key slow only 18 programs
from the suite run for longer than half second (with a maximum
of 2.5 seconds for constraints). Among those long-runners the
biggest performance improvement is 8.8% (for integer), with an
average of 2.3%.

4 One can notice that the new compiler sometimes performs worse than
the cardinality-unaware versions in a very few benchmarks in nofib. In
a highly optimising compiler with many passes it is very hard to ensure that
every “optimisation” always makes the program run faster; and, even if a
pass does improve the program per se, to ensure that every subsequent pass
will carry out all the optimisations that it did before the earlier improvement
was implemented. The data show that we do not always succeed. We leave
for the future some detailed forensic work to find out exactly why.

Program RT Thnk1 No-Opt RT RT �

binary-trees 49.4% 66.83 s -9.2%
fannkuch-redux 0.0% 158.94 s -3.7%
n-body 5.7% 38.41 s -4.4%
pidigits 8.8% 41.56 s -0.3%
spectral-norm 4.6% 17.83 s -1.7%

Table 3. Optimisation of the programs from Benchmarks Game

Library �1 Thnk1 Benchmark Alloc �

attoparsec 32.8% 19.3% benchmarks -7.1%

binary 16.8% 0.9%
bench -0.2%
builder -0.3%
get -4.3%

bytestring 5.3% 4.3% boundcheck -0.5%
all -6.6%

cassava 26.4% 9.8% benchmarks -0.7%

Table 4. Analysis and optimisation results for hackage libraries

Program LOC GHC Alloc � GHC RT �
No hack Hack No hack Hack

anna 5740 -1.6% -1.5% -0.8% -0.4%
cacheprof 1600 -1.7% -0.4% -2.3% -1.8%
fluid 1579 -1.9% -1.9% -2.8% -1.6%
gamteb 1933 -0.5% -0.1% -0.5% -0.1%
parser 2379 -0.7% -0.2% -2.6% -0.6%
veritas 4674 -1.4% -0.3% -4.5% -4.1%

Table 5. Compilation with optimised GHC

For more realistic numbers, we measured the improvement in run-
time, relative to the hacked compiler, for several programs from the
Computer Language Benchmarks Game.5 The results are shown in
Table 3. All programs were run with the official shootout settings
(except spectral-norm, to which we gave a bigger input value
of 7500) on a 2.7 GHz Intel Core i7 OS X machine with 8 Gb RAM.
These are uncharacteristic Haskell programs, optimised to within
an inch of their life by dedicated Haskell hackers. There is no easy
meat to be had, and indeed the heap-allocation changes are so tiny
(usually zero, and -0.2% at the most in the case of binary-trees)
that we omit them from the table. However, we do get one joyful re-
sult: a solid speedup of 9.2% in binary-trees due to fewer thunk
updates. As you can see, nearly half of its thunks entered at runtime
are single-entry.

7.2 Real-world programs
To test our analysis and the cardinality-powered optimisations on
some real-world programs, we chose four continuation-heavy li-
braries from the hackage repository:6 attoparsec, a fast parser
combinator library, binary, a lazy binary serialisation library,
bytestring, a space-efficient implementation of byte-vectors, and
cassava, a CSV parsing and encoding library.
These libraries come with accompanying benchmark suites, which
we ran both for the baseline compiler and the cardinality-powered
one. Table 4 contains the ratios of syntactic one-shot lambdas and
used-once thunks for the libraries, as well relative improvement
in memory allocation for particular benchmarks. Since we were
interested only in the absolute improvement against the state of

5 http://benchmarksgame.alioth.debian.org/
6 http://hackage.haskell.org/

11

Results on nofib

Program Allocs Runtime
No hack Hack No hack Hack

anna -2.1% -0.2% +0.1% -0.0%
bspt -2.2% -0.0% -0.0% +0.0%
cacheprof -7.9% -0.6% -6.1% -5.0%
calendar -9.2% +0.2% -0.0% -0.0%
constraints -0.9% -0.0% -1.2% -0.2%
cryptarithm2 -0.3% -0.3% -2.3% -2.1%
gcd -15.5% -0.0% -0.0% +0.0%
gen regexps -1.0% -0.1% -0.0% -0.0%
hpg -2.0% -1.0% -0.1% -0.0%
integer -0.0% -0.0% -8.8% -6.6%
life -0.8% -0.0% -5.9% -1.8%
mkhprog -11.9% +0.1% -0.0% -0.0%
nucleic2 -14.1% -10.9% +0.0% +0.0%
partstof -95.5% -0.0% -0.0% -0.0%
sphere -1.5% -1.5% +0.0% -0.1%
... and 72 more programs
Min -95.5% -10.9% -28.2% -12.1%
Max +3.5% +0.5% +1.8% +2.8%
Geometric mean -6.0% -0.3% -2.2% -1.4%

Table 2. Cardinality analysis-enabled optimisations for nofib

any performance benefits directly; rather, they remove potential
obstacles from other compile-time transformations. Single-entry
thunks, on the other hand give an immediate performance benefit,
by omitting the push-update-frame code, but it is a small one.

Table 2 summarises the effect of cardinality analysis when running
the nofib suite. “Allocs” is the change in how much heap was
allocated when the program is run and “Runtime” is a change in
the actual program execution time.

In Section 2.1 we mentioned a hack, used by Gill in GHC, in which
he hard-coded the call-cardinality information for three particular
functions: build, foldr and runST. Our analysis renders this
hack redundant, as now the same results can be soundly inferred.
We therefore report two sets of results: relative to an un-hacked
baseline, and relative to a hacked baseline. In both cases binary
size of the (statically) linked binaries falls slightly but consistently
(2.0% average), which is welcome. This may be due to less push-
update-frame code being generated.

Considering allocation, the numbers relative to the non-hacked
baseline are quite encouraging, but relative to the hacked compiler
the improvements are modest: the hack was very effective! Other-
wise, only one program, nucleic2 shows a significant (11%) re-
duction in allocation, which turned out to be because a thunk was
floated inside a one-shot lambda and ended up never being allo-
cated, exactly as advertised.4

A shortcoming of nofib suite is that runtimes tend to be short and
very noisy: even with the execution key slow only 18 programs
from the suite run for longer than half second (with a maximum
of 2.5 seconds for constraints). Among those long-runners the
biggest performance improvement is 8.8% (for integer), with an
average of 2.3%.

4 One can notice that the new compiler sometimes performs worse than
the cardinality-unaware versions in a very few benchmarks in nofib. In
a highly optimising compiler with many passes it is very hard to ensure that
every “optimisation” always makes the program run faster; and, even if a
pass does improve the program per se, to ensure that every subsequent pass
will carry out all the optimisations that it did before the earlier improvement
was implemented. The data show that we do not always succeed. We leave
for the future some detailed forensic work to find out exactly why.

Program RT Thnk1 No-Opt RT RT �

binary-trees 49.4% 66.83 s -9.2%
fannkuch-redux 0.0% 158.94 s -3.7%
n-body 5.7% 38.41 s -4.4%
pidigits 8.8% 41.56 s -0.3%
spectral-norm 4.6% 17.83 s -1.7%

Table 3. Optimisation of the programs from Benchmarks Game

Library �1 Thnk1 Benchmark Alloc �

attoparsec 32.8% 19.3% benchmarks -7.1%

binary 16.8% 0.9%
bench -0.2%
builder -0.3%
get -4.3%

bytestring 5.3% 4.3% boundcheck -0.5%
all -6.6%

cassava 26.4% 9.8% benchmarks -0.7%

Table 4. Analysis and optimisation results for hackage libraries

Program LOC GHC Alloc � GHC RT �
No hack Hack No hack Hack

anna 5740 -1.6% -1.5% -0.8% -0.4%
cacheprof 1600 -1.7% -0.4% -2.3% -1.8%
fluid 1579 -1.9% -1.9% -2.8% -1.6%
gamteb 1933 -0.5% -0.1% -0.5% -0.1%
parser 2379 -0.7% -0.2% -2.6% -0.6%
veritas 4674 -1.4% -0.3% -4.5% -4.1%

Table 5. Compilation with optimised GHC

For more realistic numbers, we measured the improvement in run-
time, relative to the hacked compiler, for several programs from the
Computer Language Benchmarks Game.5 The results are shown in
Table 3. All programs were run with the official shootout settings
(except spectral-norm, to which we gave a bigger input value
of 7500) on a 2.7 GHz Intel Core i7 OS X machine with 8 Gb RAM.
These are uncharacteristic Haskell programs, optimised to within
an inch of their life by dedicated Haskell hackers. There is no easy
meat to be had, and indeed the heap-allocation changes are so tiny
(usually zero, and -0.2% at the most in the case of binary-trees)
that we omit them from the table. However, we do get one joyful re-
sult: a solid speedup of 9.2% in binary-trees due to fewer thunk
updates. As you can see, nearly half of its thunks entered at runtime
are single-entry.

7.2 Real-world programs
To test our analysis and the cardinality-powered optimisations on
some real-world programs, we chose four continuation-heavy li-
braries from the hackage repository:6 attoparsec, a fast parser
combinator library, binary, a lazy binary serialisation library,
bytestring, a space-efficient implementation of byte-vectors, and
cassava, a CSV parsing and encoding library.
These libraries come with accompanying benchmark suites, which
we ran both for the baseline compiler and the cardinality-powered
one. Table 4 contains the ratios of syntactic one-shot lambdas and
used-once thunks for the libraries, as well relative improvement
in memory allocation for particular benchmarks. Since we were
interested only in the absolute improvement against the state of

5 http://benchmarksgame.alioth.debian.org/
6 http://hackage.haskell.org/

11

The hack (due to A. Gill): hardcode argument cardinalities for
build, foldr and runST.

• We compiled GHC itself with cardinality optimisations;

• Then we measured improvement in compilation runtimes.

Compiling with optimised GHC

Program Allocs Runtime
No hack Hack No hack Hack

anna -2.1% -0.2% +0.1% -0.0%
bspt -2.2% -0.0% -0.0% +0.0%
cacheprof -7.9% -0.6% -6.1% -5.0%
calendar -9.2% +0.2% -0.0% -0.0%
constraints -0.9% -0.0% -1.2% -0.2%
cryptarithm2 -0.3% -0.3% -2.3% -2.1%
gcd -15.5% -0.0% -0.0% +0.0%
gen regexps -1.0% -0.1% -0.0% -0.0%
hpg -2.0% -1.0% -0.1% -0.0%
integer -0.0% -0.0% -8.8% -6.6%
life -0.8% -0.0% -5.9% -1.8%
mkhprog -11.9% +0.1% -0.0% -0.0%
nucleic2 -14.1% -10.9% +0.0% +0.0%
partstof -95.5% -0.0% -0.0% -0.0%
sphere -1.5% -1.5% +0.0% -0.1%
... and 72 more programs
Min -95.5% -10.9% -28.2% -12.1%
Max +3.5% +0.5% +1.8% +2.8%
Geometric mean -6.0% -0.3% -2.2% -1.4%

Table 2. Cardinality analysis-enabled optimisations for nofib

any performance benefits directly; rather, they remove potential
obstacles from other compile-time transformations. Single-entry
thunks, on the other hand give an immediate performance benefit,
by omitting the push-update-frame code, but it is a small one.

Table 2 summarises the effect of cardinality analysis when running
the nofib suite. “Allocs” is the change in how much heap was
allocated when the program is run and “Runtime” is a change in
the actual program execution time.

In Section 2.1 we mentioned a hack, used by Gill in GHC, in which
he hard-coded the call-cardinality information for three particular
functions: build, foldr and runST. Our analysis renders this
hack redundant, as now the same results can be soundly inferred.
We therefore report two sets of results: relative to an un-hacked
baseline, and relative to a hacked baseline. In both cases binary
size of the (statically) linked binaries falls slightly but consistently
(2.0% average), which is welcome. This may be due to less push-
update-frame code being generated.

Considering allocation, the numbers relative to the non-hacked
baseline are quite encouraging, but relative to the hacked compiler
the improvements are modest: the hack was very effective! Other-
wise, only one program, nucleic2 shows a significant (11%) re-
duction in allocation, which turned out to be because a thunk was
floated inside a one-shot lambda and ended up never being allo-
cated, exactly as advertised.4

A shortcoming of nofib suite is that runtimes tend to be short and
very noisy: even with the execution key slow only 18 programs
from the suite run for longer than half second (with a maximum
of 2.5 seconds for constraints). Among those long-runners the
biggest performance improvement is 8.8% (for integer), with an
average of 2.3%.

4 One can notice that the new compiler sometimes performs worse than
the cardinality-unaware versions in a very few benchmarks in nofib. In
a highly optimising compiler with many passes it is very hard to ensure that
every “optimisation” always makes the program run faster; and, even if a
pass does improve the program per se, to ensure that every subsequent pass
will carry out all the optimisations that it did before the earlier improvement
was implemented. The data show that we do not always succeed. We leave
for the future some detailed forensic work to find out exactly why.

Program RT Thnk1 No-Opt RT RT �

binary-trees 49.4% 66.83 s -9.2%
fannkuch-redux 0.0% 158.94 s -3.7%
n-body 5.7% 38.41 s -4.4%
pidigits 8.8% 41.56 s -0.3%
spectral-norm 4.6% 17.83 s -1.7%

Table 3. Optimisation of the programs from Benchmarks Game

Library �1 Thnk1 Benchmark Alloc �

attoparsec 32.8% 19.3% benchmarks -7.1%

binary 16.8% 0.9%
bench -0.2%
builder -0.3%
get -4.3%

bytestring 5.3% 4.3% boundcheck -0.5%
all -6.6%

cassava 26.4% 9.8% benchmarks -0.7%

Table 4. Analysis and optimisation results for hackage libraries

Program LOC GHC Alloc � GHC RT �
No hack Hack No hack Hack

anna 5740 -1.6% -1.5% -0.8% -0.4%
cacheprof 1600 -1.7% -0.4% -2.3% -1.8%
fluid 1579 -1.9% -1.9% -2.8% -1.6%
gamteb 1933 -0.5% -0.1% -0.5% -0.1%
parser 2379 -0.7% -0.2% -2.6% -0.6%
veritas 4674 -1.4% -0.3% -4.5% -4.1%

Table 5. Compilation with optimised GHC

For more realistic numbers, we measured the improvement in run-
time, relative to the hacked compiler, for several programs from the
Computer Language Benchmarks Game.5 The results are shown in
Table 3. All programs were run with the official shootout settings
(except spectral-norm, to which we gave a bigger input value
of 7500) on a 2.7 GHz Intel Core i7 OS X machine with 8 Gb RAM.
These are uncharacteristic Haskell programs, optimised to within
an inch of their life by dedicated Haskell hackers. There is no easy
meat to be had, and indeed the heap-allocation changes are so tiny
(usually zero, and -0.2% at the most in the case of binary-trees)
that we omit them from the table. However, we do get one joyful re-
sult: a solid speedup of 9.2% in binary-trees due to fewer thunk
updates. As you can see, nearly half of its thunks entered at runtime
are single-entry.

7.2 Real-world programs
To test our analysis and the cardinality-powered optimisations on
some real-world programs, we chose four continuation-heavy li-
braries from the hackage repository:6 attoparsec, a fast parser
combinator library, binary, a lazy binary serialisation library,
bytestring, a space-efficient implementation of byte-vectors, and
cassava, a CSV parsing and encoding library.
These libraries come with accompanying benchmark suites, which
we ran both for the baseline compiler and the cardinality-powered
one. Table 4 contains the ratios of syntactic one-shot lambdas and
used-once thunks for the libraries, as well relative improvement
in memory allocation for particular benchmarks. Since we were
interested only in the absolute improvement against the state of

5 http://benchmarksgame.alioth.debian.org/
6 http://hackage.haskell.org/

11

Beyond GHC optimisations

• Hoogle+ synthesis algorithm (POPL’20) relies on cardinality
analysis to eliminate terms where some of the inputs are unused.

• Cardinality analysis is simple to design and understand:
it’s all about usage demands and demand transformers;

• It is cheap to implement: we added only 250 LOC to GHC;

• It is conservative, which makes it fast and modular;

• Call demands make it higher-order, so the analysis can infer demands on
higher-order function arguments;

• It is reasonably efficient: optimised GHC compiles up to 4% faster.

• The ideas of cardinality analysis extend beyond just optimisations in GHC.

To take away

Thanks!

