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Context

• Hundreds of deployed public 
blockchains

• $600 625 675 735 755 780 820 
billion total market cap

(7 day progression since Jan 1st)
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This work

• Formalised a blockchain consensus protocol in Coq

•Proved eventual consistency in a clique topology
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Motivation

1. Understand blockchain consensus
• what it is

• how it works: example

• why it works: our formalisation

2. Lay foundation for verified practical implementation
• verified Byzantine-tolerant consensus layer

• platform for verified smart contracts
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Future work



What it does
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l• transforms a set of 
transactions into a 
globally-agreed
sequence

• “distributed timestamp 
server” (Nakamoto2008)
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transactions can 
be anything
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GB = genesis block
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How it works
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• distributed
• multiple nodes

• all start with same GB
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what everyone 
eventually agrees on

view of all 
participants’ state



• distributed
• multiple nodes
• message-passing

over a network

• all start with same GB
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• distributed
• multiple nodes
• message-passing 

over a network

• all start with same GB
• have a transaction pool
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• distributed
• multiple nodes
• message-passing 

over a network

• all start with same GB
• have a transaction pool
• can mint blocks
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• distributed => concurrent
• multiple nodes
• message-passing over 

a network

• multiple transactions can 
be issued and propagated 
concurrently
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• distributed => concurrent
• multiple nodes
• message-passing over 

a network

• blocks can be minted 
without full knowledge of 
all transactions
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• chain fork has happened, 
but nodes don’t know
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• as block messages 
propagate, nodes become 
aware of the fork



Problem: need to choose

• blockchain “promise” = 
one globally-agreed chain
• each node must choose 

one chain
• nodes with the same 

information must choose 
the same chain
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Problem: need to choose

• blockchain “promise” = 
one globally-agreed chain
• each node must choose 

one chain
• nodes with the same 

information must choose 
the same chain
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Solution: fork choice rule

• Fork choice rule (FCR, >):
• given two blockchains, says which one is “heavier”
• imposes a strict total order on all possible blockchains
• same FCR shared by all nodes

•Nodes adopt “heaviest” chain they know
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… > [GB, A, C] > … > [GB, A, B] > … > [GB, A] > … > [GB] > …
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FCR (>)

Bitcoin: FCR based on “most cumulative work”



• distributed
• multiple nodes
• all start with GB
• message-passing over a 

network
• equipped with same FCR

• quiescent consistency: when 
all block messages have been 
delivered, everyone agrees
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Quiescent consistency



Why it works
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• blocks, chains, block forestsDefinitions

• hashes are collision-free

• FCR imposes strict total order

Parameters and

assumptions

• local state + messages “in flight” = global Invariant

• when all block messages are delivered, 
everyone agrees

Quiescent 
consistency
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Blocks and chains
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links blocks together

proof that this block 
was minted in 
accordance to the 
rules of the protocol

proof-of-work

proof-of-stake



Minting and verifying
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try to generate a proof = “ask the protocol for permission” to mint 

validate a proof = ensure protocol rules were followed



Resolving conflict
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Assumptions

•Hash functions are collision-free

• FCR imposes a strict total order on all blockchains

Monday, 8 January 2018 CPP2018 31



Invariant: local state + “in-flight” = global
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global system step



Invariant: local state + “in-flight” = global
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global system step



Invariant is inductive

state 1

state 2

state 3

state 4

state 5
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system step

invariant holds

invariant holds

system step invariant holds

system step invariant holds

system step invariant holds



Invariant implies QC

•QC: when all blocks delivered, everyone agrees

How:
• local state + “in-flight” = global
• use FCR to extract “heaviest” chain out of local state

• since everyone has same state & same FCR
➢consensus

Monday, 8 January 2018 CPP2018 35



Reusable components

•Reference implementation of block forests

•Per-node protocol logic

•Network semantics

•Clique invariant, QC property, various theorems

https://github.com/certichain/toychain
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https://github.com/certichain/toychain


Future work

•Network semantics with nodes joining/leaving at will

• Improved invariants:
• non-clique topologies
• network partitions
• Byzantine faults

•Verified smart contracts platform
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Take away

• Formalisation of a blockchain consensus protocol in Coq:
• minimal set of required security primitives
• per-node protocol logic & data structures
• network semantics

• global eventual consistency in a clique topology

https://github.com/certichain/toychain
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https://github.com/certichain/toychain

