
Mechanising Blockchain Consensus
George Pîrlea and Ilya Sergey

Monday, 8 January 2018 CPP2018 1

Context

• Hundreds of deployed public
blockchains

• $600 625 675 735 755 780 820
billion total market cap

(7 day progression since Jan 1st)

Monday, 8 January 2018

CPP2018 2

This work

• Formalised a blockchain consensus protocol in Coq

•Proved eventual consistency in a clique topology

Monday, 8 January 2018 CPP2018 3

Motivation

1. Understand blockchain consensus
• what it is

• how it works: example

• why it works: our formalisation

2. Lay foundation for verified practical implementation
• verified Byzantine-tolerant consensus layer

• platform for verified smart contracts

Monday, 8 January 2018 CPP2018 4

Future work

What it does

Monday, 8 January 2018 CPP2018 5

b
lo

ck
ch

ai
n

co
n

se
n

su
s

p
ro

to
co

l• transforms a set of
transactions into a
globally-agreed
sequence

• “distributed timestamp
server” (Nakamoto2008)

Monday, 8 January 2018 CPP2018 6

transactions can
be anything

Monday, 8 January 2018 CPP2018 7

Monday, 8 January 2018 CPP2018 8

GB = genesis block

Monday, 8 January 2018 CPP2018 9

How it works

Monday, 8 January 2018 CPP2018 10

• distributed
• multiple nodes

• all start with same GB

Monday, 8 January 2018 CPP2018 11

what everyone
eventually agrees on

view of all
participants’ state

• distributed
• multiple nodes
• message-passing

over a network

• all start with same GB

Monday, 8 January 2018 CPP2018 12

• distributed
• multiple nodes
• message-passing

over a network

• all start with same GB
• have a transaction pool

Monday, 8 January 2018 CPP2018 13

• distributed
• multiple nodes
• message-passing

over a network

• all start with same GB
• have a transaction pool
• can mint blocks

Monday, 8 January 2018 CPP2018 14

• distributed => concurrent
• multiple nodes
• message-passing over

a network

• multiple transactions can
be issued and propagated
concurrently

Monday, 8 January 2018 CPP2018 15

• distributed => concurrent
• multiple nodes
• message-passing over

a network

• blocks can be minted
without full knowledge of
all transactions

Monday, 8 January 2018 CPP2018 16

• chain fork has happened,
but nodes don’t know

Monday, 8 January 2018 CPP2018 17

Monday, 8 January 2018 CPP2018 18

• as block messages
propagate, nodes become
aware of the fork

Problem: need to choose

• blockchain “promise” =
one globally-agreed chain
• each node must choose

one chain
• nodes with the same

information must choose
the same chain

Monday, 8 January 2018 CPP2018 19

Problem: need to choose

• blockchain “promise” =
one globally-agreed chain
• each node must choose

one chain
• nodes with the same

information must choose
the same chain

Monday, 8 January 2018 CPP2018 20

Problem: need to choose

• blockchain “promise” =
one globally-agreed chain
• each node must choose

one chain
• nodes with the same

information must choose
the same chain

Monday, 8 January 2018 CPP2018 21

Problem: need to choose

• blockchain “promise” =
one globally-agreed chain
• each node must choose

one chain
• nodes with the same

information must choose
the same chain

Monday, 8 January 2018 CPP2018 22

Solution: fork choice rule

• Fork choice rule (FCR, >):
• given two blockchains, says which one is “heavier”
• imposes a strict total order on all possible blockchains
• same FCR shared by all nodes

•Nodes adopt “heaviest” chain they know

Monday, 8 January 2018 CPP2018 23

… > [GB, A, C] > … > [GB, A, B] > … > [GB, A] > … > [GB] > …

Monday, 8 January 2018 CPP2018 24

FCR (>)

Bitcoin: FCR based on “most cumulative work”

• distributed
• multiple nodes
• all start with GB
• message-passing over a

network
• equipped with same FCR

• quiescent consistency: when
all block messages have been
delivered, everyone agrees

Monday, 8 January 2018 CPP2018 25

Quiescent consistency

Why it works

Monday, 8 January 2018 CPP2018 26

• blocks, chains, block forestsDefinitions

• hashes are collision-free

• FCR imposes strict total order

Parameters and

assumptions

• local state + messages “in flight” = global Invariant

• when all block messages are delivered,
everyone agrees

Quiescent
consistency

Monday, 8 January 2018 CPP2018 27

Blocks and chains

Monday, 8 January 2018 CPP2018 28

links blocks together

proof that this block
was minted in
accordance to the
rules of the protocol

proof-of-work

proof-of-stake

Minting and verifying

Monday, 8 January 2018 CPP2018 29

try to generate a proof = “ask the protocol for permission” to mint

validate a proof = ensure protocol rules were followed

Resolving conflict

Monday, 8 January 2018 CPP2018 30

Assumptions

•Hash functions are collision-free

• FCR imposes a strict total order on all blockchains

Monday, 8 January 2018 CPP2018 31

Invariant: local state + “in-flight” = global

Monday, 8 January 2018 CPP2018 32

global system step

Invariant: local state + “in-flight” = global

Monday, 8 January 2018 CPP2018 32

global system step

Invariant is inductive

state 1

state 2

state 3

state 4

state 5

Monday, 8 January 2018 CPP2018 34

system step

invariant holds

invariant holds

system step invariant holds

system step invariant holds

system step invariant holds

Invariant implies QC

•QC: when all blocks delivered, everyone agrees

How:
• local state + “in-flight” = global
• use FCR to extract “heaviest” chain out of local state

• since everyone has same state & same FCR
➢consensus

Monday, 8 January 2018 CPP2018 35

Reusable components

•Reference implementation of block forests

•Per-node protocol logic

•Network semantics

•Clique invariant, QC property, various theorems

https://github.com/certichain/toychain

Monday, 8 January 2018 CPP2018 36

https://github.com/certichain/toychain

Future work

•Network semantics with nodes joining/leaving at will

• Improved invariants:
• non-clique topologies
• network partitions
• Byzantine faults

•Verified smart contracts platform

Monday, 8 January 2018 CPP2018 37

Take away

• Formalisation of a blockchain consensus protocol in Coq:
• minimal set of required security primitives
• per-node protocol logic & data structures
• network semantics

• global eventual consistency in a clique topology

https://github.com/certichain/toychain

Monday, 8 January 2018 CPP2018 38

https://github.com/certichain/toychain

