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What and why

• Concurrency ⇒ parallelism ⇒ efficiency

• A gap between informal and formal reasoning 

• Scalable formalisation requires compositionality



This talk

A logical framework  
for implementation  

and compositional verification  
of concurrent programs.
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Key insights

• Subjectivity

• Time-stamped Histories

• Reasoning about Deep Sharing



• Subjectivity

• Time-stamped Histories

• Reasoning about Deep Sharing

Key insights



Hoare-style program specifications

If the initial state satisfies P,   
then, after c terminates,  

the final state satisfies Q.

{ P }      { Q }

precondition postcondition

c



push(x)

pop()

Abstract specifications for a stack



push(x){ S = xs } { S′= x :: xs }

pop(){ S = xs }

Suitable for sequential case 

{    res = None ⋀ S = Nil
  ⋁ ∃x, xs′. res = Some x ⋀  
               xs = x :: xs′ ⋀ S′ = xs′ } 

Abstract specifications for a stack



push(x){ S = xs } { S′= x :: xs }

pop(){ S = xs }

Not so good for concurrent use: 
useless in the presence of interference

Abstract specifications for a stack

{    res = None ⋀ S = Nil
  ⋁ ∃x, xs′. res = Some x ⋀  
               xs = x :: xs′ ⋀ S′ = xs′ } 



y := pop();

{ y = ??? }

{ S = Nil }



y := pop();

{ y ∈ Some {1, 2} ⋁ y = None }
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push(1);

push(2);

{ S = Nil }



y := pop();

{ S = Nil }

{ y ∈ Some {1, 2, 3} ⋁ y = None }

��������
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push(1);

push(2);

��������
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push(3);



y := pop();

{ y = ??? }

{ S = Nil }

Thread-modular spec for pop?



Capture the effect of self,  
abstract over the others.

Idea

(subjective specification)



y := pop();

{ y = None ⋁ y = Some(v), where v ∈ Ho }

{ Hs = ∅ }

• Hs — history of my pushes/pops to the stack

• Ho — history of pushes/pops by all other threads

Subjective stack specifications



y := pop();

{ y = None ⋁ y = Some(v), where v ∈ Ho }

{ Hs = ∅ }

• Hs — history of my pushes/pops to the stack

• Ho — history of pushes/pops by all other threads

Subjective stack specifications

| {z }

what I popped depends 
on what the others have pushed



{ y = None ⋁ y = Some(v), where v ∈ Ho }

Valid only if the history is changed 
by registering actual push/pops.

| {z }

what I popped depends 
on what the others have pushed

y := pop();

{ Hs = ∅ }

Subjective stack specifications



{ P } { Q }C ⊢  

Specifies expected 
thread interference

y := pop();



Model of shared state 
with manifested interference



Concurrent Resources

Shared state



Auxiliary state

Shared state

Owicki, Gries [CACM’77]

Concurrent Resources



Auxiliary state,  
controlled by this thread

Auxiliary state,  
controlled by others

Subjective Concurrent Resources

Shared state

Ley-Wild, Nanevski [POPL’13]



Transitions, allowed  
to the others  
(Rely)

Changes (transitions)  
allowed to myself 

(Guarantee)

What I have = what I can do and what I have done. 

Subjective Concurrent Resources
Jones [TOPLAS’83]



State Transition Systems 
with  

Subjective Auxiliary State

Concurrent Resources 
=

Nanevski et al [ESOP’14]



Self

Other

Joint

• Self     — state controlled by me

• Other  — state controlled by all other threads

• Joint    —  modified by everyone, as allowed by transitions

Resource-based specifications



C =

{ P } c { Q }
| {z }

defines resources, touched by c, 
their transitions and invariants

@ CC ⊢ 

Self

Other

Joint

Resource-based specifications



C =

{ P } c { Q }@ C

Self

Other

Joint

specify self/other/joint parts

Resource-based specifications



Fine-grained Concurrent Separation Logic
Nanevski, Ley-Wild, Sergey, Delbianco [ESOP’14]

• Logic for reasoning with (fine-grained) 
concurrent resources

• Emphasis on subjective specifications



Key insights

• Subjectivity

• Histories

• Deep Sharing



• Subjectivity — reasoning with self and other

• Histories

• Deep Sharing

Key insights



• Subjectivity — reasoning with self and other

• Histories

• Deep Sharing

Key insights



Partial Commutative Monoids

• A set S of elements

• Join (⊕): commutative, associative, partial

• Unit element 0: ∀e ∈ S, e⊕0 = 0⊕e = e   

(S, ⊕, 0)



child1 child2||
s1 ⊕ s2

parent
{ s1 ⊕ s2 }

•  commutative
• associative
• unit — idle thread
• partial

Logical state split



parent

child1 ||

State that belongs to child1

child2||
s1

{ s1 }

{ s1 ⊕ s2 }

Logical state split



child1 ||

State that belongs to child2

child2||
s2

{ s1 } { s2 }

parent
{ s1 ⊕ s2 }

Logical state split



||||
z2

{ s2 }{ s1 }

{ z1 } { z2 }

{ s1 ⊕ s2 }

Logical state split

child1 child2

parent



z1 ⊕ z2

||

New state that belongs to parent′

||
parent′

{ s2 }{ s1 }

{ z1 } { z2 }

{ s1 ⊕ s2 }

{ z1 ⊕ z2 }

Logical state split

child1 child2

parent



PCMs: a uniform interface 
for splittable state 



Familiar PCM: finite heaps

• Heaps are partial finite maps nat → Val 

• Join operation ⊕ is disjoint union 

• Unit element 0 is the empty heap ∅



hs

• hs — heap, logically owned by this thread

• ho — heap, owned by others

• Transitions — writes into hs

ho

∅  

Resource for thread-local state
Concurrent Separation Logic 

O’Hearn [CONCUR’04]



*x := 5; *y := 7;

{ hs = x ↦ - ⊕ y ↦ - ⋀  ho = h }

{ hs = x ↦ - ⋀ ho = y ↦ - ⊕ h } { hs = y ↦ - ⋀ ho = x ↦ - ⊕ h }

{ hs = x ↦ 5 ⋀ ho = y ↦ - ⊕ h } { hs = y ↦ 7 ⋀ ho = x ↦ - ⊕ h }

{ hs = x ↦ 5 ⊕ y ↦ 7 ⋀  ho = h }

��������

��������

disjoint by resource definition 



Less familiar PCM: histories

Describing atomic state updates 
via auxiliary state

Sergey, Nanevski, Banerjee [ESOP’15]



push(x){ S = xs } { S′ = x :: xs }

Atomic stack specifications



x :: xs

Atomic stack specifications

xs

“timestamp”

tk    →   



tk    →   
tk+1   → 

tk+2   → 
tk+3   → 

…
…

tk+n   → |
{z

}

time increased at  
every abstract operationtk+4   → 



Changes by this thread Changes by other threads

tk+4   → 

tk+1   → 

tk+3   → 

tk+n   → 

tk    →   

tk+2   → 

…
…



tk+4   → 

tk+1   → 

tk+3   → 

tk+n   → 

tk    →   

tk+2   → 

…
…

Hs
Ho

Hs, Ho — self/other contributions to the resource history



Histories are like heaps!

• Histories are partial finite maps nat → AbsOp 

• Join operation ⊕ is disjoint union 

• Unit element 0 is the empty history ∅



push(x)

{ ∃t, xs.  Hs = t ↦ (xs, x::xs) ⋀ H ⊆ Ho ⋀ H < t }@Cstack

Stack specification

{ Hs = ∅ ⋀ H ⊆ Ho }

self-contribution is a single entry t allocated during the call



{ res.  if  (res = Some x)
         then  ∃t, xs. H ⊆ Ho ⋀ H < t ⋀  Hs = t ↦ (x::xs, xs)) 
         else   ∃t. H ⊆ Ho ⋀ H ≤ t 
                    ⋀ Hs = ∅ ⋀ t ↦ (_, Nil) ⊆ Ho }@Cstack

Stack specification

pop()

{ Hs = ∅ ⋀ H ⊆ Ho }

• pop has hit Nil during its execution at the moment t



{ res.  if  (res = Some x)
         then  ∃t, xs. H ⊆ Ho ⋀ H < t ⋀  Hs = t ↦ (x::xs, xs)) 
         else   ∃t. H ⊆ Ho ⋀ H ≤ t 
                    ⋀ Hs = ∅ ⋀ t ↦ (_, Nil) ⊆ Ho }@Cstack

Stack specification

pop()

{ Hs = ∅ ⋀ H ⊆ Ho }

no self-contributions initially?



Framing in FCSL

{ }
my_program

{ }



Framing in FCSL

{ }
my_program

{ }

Works for any PCM, not just heaps (e.g., SL and CSL)!



push(x)

{ ∃t, xs. H ⊆ Ho ⋀ H < t ⋀ Hs = t ↦ (xs, x::xs) }@Cstack

{ Hs = ∅ ⋀ H ⊆ Ho }

Framing histories



push(x)

{ ∃t, xs. H2 ⊆ Ho ⋀ H1 ⊕ H2 < t ⋀ Hs = H1 ⊕ t ↦ (xs, x::xs) }@Cstack

{ Hs = H1 ⋀ H2 ⊆ Ho }

Framing histories

initial self-contribution

final self-contribution

t is later than H1 ⊕ H2 



How clients use 
splittable histories?



A stack client program

• Two threads: producer and consumer

• Ap — an n-element producer array

• Ac — an n-element consumer array

• A shared concurrent stack S is used as a buffer

• Goal: prove the exchange correct



• Pushed H E   iff  
E is a multiset of elements, pushed in H

• Popped H E   iff  
E is a multiset of elements, popped in H

Auxiliary Predicates



letrec produce(i : nat) = {
  if (i == n)
  then return;
  else {
    S.push(Ap[i]);
    produce(i+1);   
  }
}

{ Ap ↦ L ⋀  Pushed Hs L[< i]  ⋀  Popped Hs ∅ }

{ Ap ↦ L ⋀  Pushed Hs L[< n]  ⋀  Popped Hs ∅ }



letrec consume(i : nat) = {
  if (i == n)
  then return;
  else {
    t ← S.pop();
    if t == Some v  
    then {
      Ac[i] := v;
      consume(i+1);  
    }
    else consume(i);   
  }
}

{∃L, Ac ↦ L ⋀  Pushed Hs ∅  ⋀  Popped Hs  L[< i] }

{∃L, Ac ↦ L ⋀  Pushed Hs ∅ ⋀  Popped Hs  L[< n] }



consume(0)produce(0)

��������

��������

8
>><

>>:

9
>>=

>>;

No other threads 
can interfere on S

hide Cstack(hS) in



consume(0)produce(0)

��������

��������

8
>><

>>:

9
>>=

>>;

{ Ap ↦ L ⊕ Ac ↦ L′ ⊕ hS }

hide Cstack(hS) in



consume(0)produce(0)

��������

��������

8
>><

>>:

9
>>=

>>;

{ Ap ↦ L ⊕ Ac ↦ L′ ⊕ hS }

{ Ap ↦ L  { Ac ↦ L′ 
⋀ Pushed Hs ∅  ⋀  Popped Hs ∅ } ⋀ Pushed Hs ∅  ⋀  Popped Hs ∅ }

hide Cstack(hS) in



consume(0)produce(0)

��������

��������

8
>><

>>:

9
>>=

>>;

{ Ap ↦ L ⊕ Ac ↦ L′ ⊕ hS }

{ Ap ↦ L  { Ac ↦ L′ 
⋀ Pushed Hs ∅  ⋀  Popped Hs ∅ } ⋀ Pushed Hs ∅  ⋀  Popped Hs ∅ }

{ Ap ↦ L  ⋀  
Pushed Hs L[< n]  ⋀   

Popped Hs ∅ }

{ Ac ↦ L′′ ⋀    
Pushed Hs ∅  ⋀   

Popped Hs L′′[<n] }

These are the only changes  
in the stack’s history

hide Cstack(hS) in



consume(0)produce(0)

��������

��������

8
>><

>>:

9
>>=

>>;

{ Ap ↦ L ⊕ Ac ↦ L′ ⊕ hS }

{ Ap ↦ L  { Ac ↦ L′ 
⋀ Pushed Hs ∅  ⋀  Popped Hs ∅ } ⋀ Pushed Hs ∅  ⋀  Popped Hs ∅ }

{ Ap ↦ L  ⋀  
Pushed Hs L[< n]  ⋀   

Popped Hs ∅ }

{ Ac ↦ L′′ ⋀    
Pushed Hs ∅  ⋀   

Popped Hs L′′[<n] }

{ Ap ↦ L ⊕ Ac ↦ L′′ ⊕ hS′ ⋀ L =set L′′}

hide Cstack(hS) in
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• Histories

• Deep Sharing
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a

b c

ed

Ramified data structures



letrec span (x : ptr) : bool = {
  if x == null then return false; 
  else 
    b ← CAS(x->m, 0, 1); 
    if b then
      (rl,rr) ← (span(x->l) || span(x->r)); 
      if ¬rl then x->l := null;
      if ¬rr then x->r := null;
      return true;
    else return false;
}

mark the node x

run in parallel for successors

prune redundant edges

m l r

... ...

x

In-place concurrent spanning tree construction



a

b c

ed



a

b c

ed

✔✔
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✔✔

✔✔

✗

✗



a

b c

ed

✔✔

✔✔

✗

✗



a

b c

ed
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a

b c

ed



Why verifying span is difficult?
The recursion scheme does not  

follow the shape of the structure.

a

b c

ed

a

b c

ed

a

b c

ed

oneshot ,
�

. let x
=

ref
(inl

(

0

)

) in

{
tryset

=

�n
. CAS

(x
, inl

(

0

)

, inr
(n
)

)

,

check
=

�

. let y
=

!x in
�

.

match y
,

!x with

inl
(

)

,

)
(

)

| inr
(n
)

, inl
(

) )
assert

(false
)

| inr
(n
)

, inr
(m
) )

assert
(n
=

m
)

end }

{
T

r

u

e}
oneshot

(

)

{ c

. 8
v

. {
T

r

u

e}
c

.tryset
(

v

) {
w

.

w 2 {true
, false}} ⇤

{
T

r

u

e}
c

.check
(

) {
f

. {
T

r

u

e}
f

(

) {
T

r

u

e}} }

Figure 2. Example code and specification

2.
Iris Primer

Iris is a generic higher-order concurrent separation logic. Generic

here refers to the fact that the logic is parametrized by the language

of program
expressions that one wishes to reason about, so the same

logic can be used for a large variety of languages. For the purpose

of this paper, we instantiate Iris with an ML-like language with

higher-order store, fork, and compare-and-swap (CAS). The logic

includes the usual connectives and rules of higher-order separation

assertion logic, some of which are shown in the grammar below. 2

In this section, we will give a brief tour of Iris, and demonstrate the

purpose of these most important logical connectives.

P

,

Q

,

R

:

:

=

T

r

u

e |
F

a

l

s

e |
P ^

Q |
P _

Q |
P )

Q

| 8
x

.

P | 9
x

.

P |
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Q |
` 7!

v |
.

P |
t

=

u

|
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|
a �

| V
(

a

) | {
P }

e {
v

.

Q} |
P V

Q |
.

.

.

W
hat makes Iris a higher-order separation logic is that universal

and existential quantifiers can range over any type, including that of

assertions and (higher-order) predicates. Furthermore, notice that

Hoare triples {
P }

e {
v

.

Q} are part of the assertion logic instead

of being a separate entity. To that end, triples can be used in the

same way as any logical assertion, and in particular, they can be

nested to account for specifications of higher-order functions.

We will demonstrate this, and some other core features of Iris,

by verifying the safety of the simple higher-order-program
given in

Figure 2. This is of course a rather contrived example, but it serves

to showcase the core features of Iris.

The function
oneshot

allocates a oneshot location
at x and

returns a record with two functions. The function
tryset

(

n

) tries

to set the location to
n, which will fail if the location has already

been set. We use
CAS to ensure correctness of the check even if two

threads concurrently try to set the location. The function
check

(

)

records the current state of the location and then returns a closure

which, if the location has already been initialized, checks that it

does not change.

The specification looks a little funny with most pre- and post-

conditions being
T

r

u

e. The reason for this is that all we are aiming

to show
here is safety of this code, i.e., we want to prove that the

assert statements will never fail: the branch with
assert

(false
)

will never get executed, and in the final branch,
n will always equal

2
Actually, many of the connectives given in this grammar are defined as

derived forms in Iris, and this flexibility is an important aspect of the logic.

For more details on this, see [23, 1].

m. Our Hoare triples imply safety, so we do not need to impose any

further conditions. As is common for Hoare triples about functional

programs, the postconditions have a binder to refer to the return

value. We will omit the binder if the result is always unit.

We use nested Hoare triples to express that oneshot
returns

closures: Since Hoare triples are just assertions, we can put them

into the postcondition of oneshot to describe what the client can

assume about
c. Furthermore, since Iris is a concurrent program

logic, the specification
for

oneshot
actually

permits the client

to
call

tryset
and

check
as well as the

f

returned
by
check

concurrently from
multiple threads, in any combination.

High-level proof structure.
To perform

this proof, we need to

somehow
encode the fact that we are only performing a oneshot

update to x. To this end, we will allocate a ghost location
� which

mirrors the current state of x. This may at first sound rather point-

less; why should we record a value in the ghost state that is exactly

the same as the value in a particular physical location?

The reason we do this, is that Iris is not only generic in the lan-

guage we reason about, but also generic on the notion of ownership

on ghost locations. We can define the structure of ghost state our-

selves, which also means we get to control which kind of sharing is

possible. For a physical location, the assertion
` 7!

v expresses full

ownership, and thus the absence of sharing on location
`. For our

ghost location
�, we want to allow

arbitrary sharing of
�, but only

once the update has happened. This allows the closure returned by

check to own a piece of
�

witnessing the current value. We will

then have an invariant tying the value of
� to the value of x, so we

know which value that closure is going to see when it reads from
x,

and that value is going to match y.

With this high-level proof structure in mind, we now
explain

how
exactly ownership and sharing of ghost state can be controlled.

2.1
Ghost state in Iris: Resource algebras

The key properties of ownership of ghost state in concurrent sepa-

ration logics are:

•

Ownership of different threads can be composed.

•

Composition of ownership is associative and commutative, mir-

roring the associative and commutative semantics of parallel

composition.

•

Combinations of ownership that do not make sense are ruled

out, e.g., multiple threads claiming to have exclusive ownership

of the same piece of ghost state.

For these reasons, partial commutative monoids (PCMs) have

become a canonical structure for representing ghost state in separa-

tion logics. Iris 1.0 was parametrized by an arbitrary PCM, so that

the structure of the ghost state was entirely up to the user.

In Iris 1.1, we are deviating slightly from
this, using our own

notion of a resource algebra (RA), whose definition is in Figure 3.

There are two key differences between RAs and PCMs:

1. The composition operation on RAs is total (as opposed to the

partial composition operation of a PCM), but there is a specific

subset of valid elements that is compatible with the composition

operation (RA-VALID-OP).

2. Instead
of a single unit that is an

identity
to

every
element,

we allow
for multiple units, via a function b�c assigning to

every element
a its (duplicable) core 3b

ac, as demanded by
RA-

CORE-ID. We further demand that b�c is idempotent (RA-CORE-

3
It is not uncommon for separation logics to define a “core” on the struc-

ture of their state [29, 38]. However, the exact definitions are all slightly

different.
3

2016/3/16
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Figure2.Examplecodeandspecification

2.
IrisPrimer

Irisisagenerichigher-orderconcurrentseparationlogic.Generic

herereferstothefactthatthelogicisparametrizedbythelanguage

ofprogram
expressionsthatonewishestoreasonabout,sothesame

logiccanbeusedforalargevarietyoflanguages.Forthepurpose

ofthispaper,weinstantiateIriswithanML-likelanguagewith

higher-orderstore,fork,andcompare-and-swap(CAS).Thelogic

includestheusualconnectivesandrulesofhigher-orderseparation

assertionlogic,someofwhichareshowninthegrammarbelow.
2

Inthissection,wewillgiveabrieftourofIris,anddemonstratethe

purposeofthesemostimportantlogicalconnectives.
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W
hatmakesIrisahigher-orderseparationlogicisthatuniversal

andexistentialquantifierscanrangeoveranytype,includingthatof

assertionsand(higher-order)predicates.Furthermore,noticethat

Hoaretriples{
P}

e{
v

.

Q}arepartoftheassertionlogicinstead

ofbeingaseparateentity.Tothatend,triplescanbeusedinthe

samewayasanylogicalassertion,andinparticular,theycanbe

nestedtoaccountforspecificationsofhigher-orderfunctions.

Wewilldemonstratethis,andsomeothercorefeaturesofIris,

byverifyingthesafetyofthesimplehigher-order-program
givenin

Figure2.Thisisofcoursearathercontrivedexample,butitserves

toshowcasethecorefeaturesofIris.

Thefunction
oneshot

allocatesaoneshotlocationatxand

returnsarecordwithtwofunctions.Thefunction
tryset

(

n

)tries

tosetthelocationto
n,whichwillfailifthelocationhasalready

beenset.WeuseCAStoensurecorrectnessofthecheckeveniftwo

threadsconcurrentlytrytosetthelocation.Thefunction
check

(

)

recordsthecurrentstateofthelocationandthenreturnsaclosure

which,ifthelocationhasalreadybeeninitialized,checksthatit

doesnotchange.

Thespecificationlooksalittlefunnywithmostpre-andpost-

conditionsbeing
T

r

u

e.Thereasonforthisisthatallweareaiming

toshow
hereissafetyofthiscode,i.e.,wewanttoprovethatthe

assertstatementswillneverfail:thebranchwith
assert

(false
)

willnevergetexecuted,andinthefinalbranch,
nwillalwaysequal

2Actually,manyoftheconnectivesgiveninthisgrammararedefinedas

derivedformsinIris,andthisflexibilityisanimportantaspectofthelogic.

Formoredetailsonthis,see[23,1].

m.OurHoaretriplesimplysafety,sowedonotneedtoimposeany

furtherconditions.AsiscommonforHoaretriplesaboutfunctional

programs,thepostconditionshaveabindertorefertothereturn

value.Wewillomitthebinderiftheresultisalwaysunit.

WeusenestedHoaretriplestoexpressthatoneshotreturns

closures:SinceHoaretriplesarejustassertions,wecanputthem

intothepostconditionofoneshottodescribewhattheclientcan

assumeabout
c.Furthermore,sinceIrisisaconcurrentprogram

logic,thespecification
for

oneshot
actually

permitstheclient

tocall
tryset

and
check

aswellasthe
f

returnedby
check

concurrentlyfrom
multiplethreads,inanycombination.

High-levelproofstructure.
Toperform

thisproof,weneedto

somehow
encodethefactthatweareonlyperformingaoneshot

updatetox.Tothisend,wewillallocateaghostlocation
�which

mirrorsthecurrentstateofx.Thismayatfirstsoundratherpoint-

less;whyshouldwerecordavalueintheghoststatethatisexactly

thesameasthevalueinaparticularphysicallocation?

Thereasonwedothis,isthatIrisisnotonlygenericinthelan-

guagewereasonabout,butalsogenericonthenotionofownership

onghostlocations.Wecandefinethestructureofghoststateour-

selves,whichalsomeanswegettocontrolwhichkindofsharingis

possible.Foraphysicallocation,theassertion
`7!

vexpressesfull

ownership,andthustheabsenceofsharingonlocation
`.Forour

ghostlocation
�,wewanttoallow

arbitrarysharingof
�,butonly

oncetheupdatehashappened.Thisallowstheclosurereturnedby

checktoownapieceof
�witnessingthecurrentvalue.Wewill

thenhaveaninvarianttyingthevalueof
�tothevalueofx,sowe

knowwhichvaluethatclosureisgoingtoseewhenitreadsfrom
x,

andthatvalueisgoingtomatchy.

Withthishigh-levelproofstructureinmind,wenow
explain

howexactlyownershipandsharingofghoststatecanbecontrolled.

2.1
GhoststateinIris:Resourcealgebras

Thekeypropertiesofownershipofghoststateinconcurrentsepa-

rationlogicsare:

•Ownershipofdifferentthreadscanbecomposed.

•Compositionofownershipisassociativeandcommutative,mir-

roringtheassociativeandcommutativesemanticsofparallel

composition.

•Combinationsofownershipthatdonotmakesenseareruled

out,e.g.,multiplethreadsclaimingtohaveexclusiveownership

ofthesamepieceofghoststate.

Forthesereasons,partialcommutativemonoids(PCMs)have

becomeacanonicalstructureforrepresentingghoststateinsepara-

tionlogics.Iris1.0wasparametrizedbyanarbitraryPCM,sothat

thestructureoftheghoststatewasentirelyuptotheuser.

InIris1.1,wearedeviatingslightlyfrom
this,usingourown

notionofaresourcealgebra(RA),whosedefinitionisinFigure3.

TherearetwokeydifferencesbetweenRAsandPCMs:

1.ThecompositionoperationonRAsistotal(asopposedtothe

partialcompositionoperationofaPCM),butthereisaspecific

subsetofvalidelementsthatiscompatiblewiththecomposition

operation(RA-VALID-OP).

2.Insteadofasingleunitthatisanidentitytoeveryelement,

weallow
formultipleunits,viaafunctionb�cassigningto

everyelement
aits(duplicable)core

3b
ac,asdemandedby

RA-

CORE-ID.Wefurtherdemandthatb�cisidempotent(RA-CORE-

3Itisnotuncommonforseparationlogicstodefinea“core”onthestruc-

tureoftheirstate[29,38].However,theexactdefinitionsareallslightly

different.
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Assumptions for correctness

• The graph modified only by the commands of span

• The initial call is done from a root node

letrec span (x : ptr) : bool = {
  if x == null then return false; 
  else 
    b ← CAS(x->m, 0, 1); 
    if b then
      (rl,rr) ← (span(x->l) || span(x->r)); 
      if ¬rl then x->l := null;
      if ¬rr then x->r := null;
      return true;
    else return false;
}



Graph Resource: State

shared state (heap)

a

b c

ed
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ed

b

a

c

Auxiliary state  
of this thread

Auxiliary state  
of all other threads

Graph Resource: State



Graph Resource: marking a node

a

b c

ed

mark
(b)

a

b c

ed

b

marked by this thread 
(Guarantee)
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b c
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mark(b)T a
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marked by other thread 
(Rely)

Graph Resource: marking a node



Graph Resource: pruning an edge

prune(b->r)
a

b c

ed

b

a

b c

ed

No other thread can do it!

b



Specification for span

{ P } span(x) { Q }@CSpanTree



Specification for span

span(x) : span_tp (x, CSpanTree, P , Q) 



Definition span_tp (x : ptr) := 
  {i (g1 : graph (joint i))}, STsep [SpanTree]
   
    (fun s1 => i = s1 ⋀ (x == null ⋁ x ∈ dom (joint s1)), 
   
     fun (r : bool) s2 => exists g2 : graph (joint s2), 
       subgraph g1 g2 ⋀
       if r then x != null ⋀ 
                 exists (t : set ptr),
                   self s2 = self i ⊕ t ⋀ 
                   tree g2 x t ⋀
                   maximal g2 t ⋀ 
                   front g1 t (self s2 ⊕ other s2) 
       else (x == null ⋁ mark g2 x) ⋀ 
            self s2 = self i).
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                   self s2 = self i ⊕ t ⋀ 
                   tree g2 x t ⋀
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                   front g1 t (self s2 ⊕ other s2) 
       else (x == null ⋁ mark g2 x) ⋀ 
            self s2 = self i).

Specification for span
concurrent resource



Definition span_tp (x : ptr) := 
  {i (g1 : graph (joint i))}, STsep [SpanTree]
   
    (fun s1 => i = s1 ⋀ (x == null ⋁ x ∈ dom (joint s1)), 
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       subgraph g1 g2 ⋀
       if r then x != null ⋀ 
                 exists (t : set ptr),
                   self s2 = self i ⊕ t ⋀ 
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                   front g1 t (self s2 ⊕ other s2) 
       else (x == null ⋁ mark g2 x) ⋀ 
            self s2 = self i).

Specification for span
precondition



Definition span_tp (x : ptr) := 
  {i (g1 : graph (joint i))}, STsep [SpanTree]
   
    (fun s1 => i = s1 ⋀ (x == null ⋁ x ∈ dom (joint s1)), 
   
     fun (r : bool) s2 => exists g2 : graph (joint s2), 
       subgraph g1 g2 ⋀
       if r then x != null ⋀ 
                 exists (t : set ptr),
                   self s2 = self i ⊕ t ⋀ 
                   tree g2 x t ⋀
                   maximal g2 t ⋀ 
                   front g1 t (self s2 ⊕ other s2) 
       else (x == null ⋁ mark g2 x) ⋀ 
            self s2 = self i).

Specification for span

postcondition



Definition span_tp (x : ptr) := 
  {i (g1 : graph (joint i))}, STsep [SpanTree]
   
    (fun s1 => i = s1 ⋀ (x == null ⋁ x ∈ dom (joint s1)), 
   
     fun (r : bool) s2 => exists g2 : graph (joint s2), 
       subgraph g1 g2 ⋀
       if r then x != null ⋀ 
                 exists (t : set ptr),
                   self s2 = self i ⊕ t ⋀ 
                   tree g2 x t ⋀
                   maximal g2 t ⋀ 
                   front g1 t (self s2 ⊕ other s2) 
       else (x == null ⋁ mark g2 x) ⋀ 
            self s2 = self i).

Specification for span

logical variables
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Definition span_tp (x : ptr) := 
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front g1 t (self s2 ⊕ other s2)

Open world assumption
(assuming other-interference)
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Cancelling the interference

front g1 t (self s2 ⊕ other s2)
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front g1 t (self s2 ⊕ other s2)

hide CSpanTree(h1) in { span(a) }

donated local heap

Cancelling the interference

no other threads at the end



a

x c

ed

front g1 t (self s2)

hide CSpanTree(h1) in { span(a) }

Cancelling the interference



a

x c

ed

tree g2 a t          ⋀ maximal g2 t ⋀

is_root a g1         ⋀ subgraph g1 g2

⋀ t = self s2  ⋀front g1 t (self s2)

⇒ spanning t g1

Cancelling the interference

{follow from postcondition 
and graph connectivity



• Subjectivity — reasoning with self and other

• Histories — temporal specification via state

• Deep Sharing

Key insights



• Subjectivity — reasoning with self and other

• Histories — temporal specification via state

• Deep Sharing — splitting auxiliary state

Key insights
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Composing programs and proofs

CAS-lock Ticketed lock

Allocator

Increment

Abstract lock

Treiber stack

Producer/ConsumerSequential stack

Flat combiner

FC stack
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Increment

Abstract lock
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Composing programs and proofs
CAS-lock Ticketed lock

Allocator

Increment

Abstract lock

Producer/
Consumer

Sequential  
stack

Flat combiner

FC stack

Abstract stack

Treiber stack

Exchanger
Counting 
network

Quiescent  
client

Quantitatively 
relaxed client

Jayanti’s 
snapshot

Snapshot 
client

Atomic 
snapshot

non-linearizable data structures

tricky linearizability argument



To take away

Thanks!

• Subjectivity:  
 thread-modularity = reasoning in terms of self and other

• Histories: capturing temporal aspects via auxiliary state

• Deep Sharing: reasoning about ramified data 
structures by splitting not real, but auxiliary state


