
Hoare-style Specifications as
Correctness Conditions  

for Non-Linearizable Concurrent Objects

Ilya Sergey
Aleks Nanevski  

Anindya Banerjee  
Germán Andrés Delbianco

biennial report
2008-09

madrid institute
for advanced studies

memoria software v3.qxd 13/8/10 10:48 Página 1

OOPSLA 2016
November 2, 2016

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated
*

O
O
P
S
LA
*

Ar
tifact *

A
E
C

Linearizable Concurrent Objects

Nоn-overlapping calls to methods of a concurrent object  
should appear to take effect in their sequential order.

Linearizability: A Correctness Condition for
Concurrent Objects
MAURICE P. HERLIHY and JEANNETTE M. WING
Carnegie Mellon University

A concurrent object is a data object shared by concurrent processes. Linearizability is a correctness
condition for concurrent objects that exploits the semantics of abstract data types. It permits a high
degree of concurrency, yet it permits programmers to specify and reason about concurrent objects
using known techniques from the sequential domain. Linearizability provides the illusion that each
operation applied by concurrent processes takes effect instantaneously at some point between its
invocation and its response, implying that the meaning of a concurrent object’s operations can be
given by pre- and post-conditions. This paper defines linearizability, compares it to other correctness
conditions, presents and demonstrates a method for proving the correctness of implementations, and
shows how to reason about concurrent objects, given they are linearizable.

Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concurrent Programming;
D.2.1 [Software Engineering]: Requirements/Specifications; D.3.3 [Programming Lan-
guages]: Language Constructs--abstract data types, concurrent programming structures, data types
and structures; F.1.2 [Computation by Abstract Devices]: Modes of Computation-parallelism;
F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and Reasoning about
Programs-pre- and post-conditions, specification techniques

General Terms: Theory, Verification

Additional Key Words and Phrases: Concurrrency, correctness, Larch, linearizability, multi-
processing, serializability, shared memory, specification

1. INTRODUCTION

1 .l Overview
Informally, a concurrent system consists of a collection of sequential processes
that communicate through shared typed objects. This model encompasses both
message-passing architectures in which the shared objects are message queues,

A preliminary version of this paper appeared in the Proceedings of the 14th ACM Symposium on
Principles of Programming Languages, January 1987 [21].
This research was sponsored by IBM and the Defense Advanced Research Projects Agents (DOD),
ARPA order 4976 (Amendment 20), under contract F33615-87-C-1499, monitored by the Avionics
Laboratory, Air Force Wright Aeronautical Laboratories, Wright-Patterson AFB. Additional spport
for J. M. Wing was provided in part by the National Science Foundation under grant CCR-8620027.
The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the US Government.
Authors’ address: Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA
15213-3890.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1990 ACM 0164-0925/90/0700-0463 $01.50

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 3, July 1990, Pages 463-492.

Linearizability is expensive

Laws of Order: Expensive Synchronization in
Concurrent Algorithms Cannot be Eliminated

Hagit Attiya
Technion

hagit@cs.technion.il

Rachid Guerraoui
EPFL

rachid.guerraoui@epfl.ch

Danny Hendler
Ben-Gurion University

hendlerd@cs.bgu.ac.il

Petr Kuznetsov
TU Berlin/Deutsche Telekom Labs

pkuznets@acm.org

Maged M. Michael
IBM T. J. Watson Research Center

magedm@us.ibm.com

Martin Vechev
IBM T. J. Watson Research Center

mtvechev@us.ibm.com

Abstract
Building correct and efficient concurrent algorithms is known to
be a difficult problem of fundamental importance. To achieve ef-
ficiency, designers try to remove unnecessary and costly synchro-
nization. However, not only is this manual trial-and-error process
ad-hoc, time consuming and error-prone, but it often leaves design-
ers pondering the question of: is it inherently impossible to elimi-
nate certain synchronization, or is it that I was unable to eliminate
it on this attempt and I should keep trying?

In this paper we respond to this question. We prove that it is im-
possible to build concurrent implementations of classic and ubiqui-
tous specifications such as sets, queues, stacks, mutual exclusion
and read-modify-write operations, that completely eliminate the
use of expensive synchronization.

We prove that one cannot avoid the use of either: i) read-after-
write (RAW), where a write to shared variable A is followed by a
read to a different shared variable B without a write to B in between,
or ii) atomic write-after-read (AWAR), where an atomic operation
reads and then writes to shared locations. Unfortunately, enforcing
RAW or AWAR is expensive on all current mainstream processors.
To enforce RAW, memory ordering–also called fence or barrier–
instructions must be used. To enforce AWAR, atomic instructions
such as compare-and-swap are required. However, these instruc-
tions are typically substantially slower than regular instructions.

Although algorithm designers frequently struggle to avoid RAW
and AWAR, their attempts are often futile. Our result characterizes
the cases where avoiding RAW and AWAR is impossible. On the
flip side, our result can be used to guide designers towards new
algorithms where RAW and AWAR can be eliminated.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]; E.1 [Data]: Data Structures

General Terms Algorithms, Theory
Keywords Concurrency, Algorithms, Lower Bounds, Memory
Fences, Memory Barriers

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’11, January 26–28, 2011, Austin, Texas, USA.
Copyright c⃝ 2011 ACM 978-1-4503-0490-0/11/01. . . $10.00

1. Introduction
The design of concurrent applications that avoid costly synchro-
nization patterns is a cardinal programming challenge, requiring
consideration of algorithmic concerns and architectural issues with
implications to formal testing and verification.

Two common synchronization patterns that frequently arise in
the design of concurrent algorithms are read after write (RAW) and
atomic write after read (AWAR).

The RAW pattern consists of a process writing to some shared
variable A, followed by the same process reading a different shared
variable B, without that process writing to B in between. The
AWAR pattern consists of a process reading some shared variable
followed by the process writing to a shared variable (the write could
be to the same shared variable as the read), where the entire read-
write sequence is atomic. Examples of the AWAR pattern include
read-modify-write operations such as a Compare-and-Swap [26]
(CAS).

Unfortunately, on all mainstream processor architectures, the
RAW and AWAR patterns are associated with expensive instruc-
tions. Modern processor architectures use relaxed memory mod-
els, where guaranteeing RAW order among accesses to indepen-
dent memory locations requires the execution of memory order-
ing instructions–often called memory fences or memory barriers–
that enforce RAW order.1 Guaranteeing the atomicity of AWAR
requires the use of atomic instructions. Typically, fence and atomic
instructions are substantially slower than regular instructions, even
under the most favorable caching conditions.

Due to these high overheads, designers of concurrent algorithms
aim to avoid both RAW and AWAR patterns. However, such at-
tempts are often unsuccessful: in many cases, even after multiple
attempts, it turns out impossible to avoid these patterns while en-
suring correctness of the algorithm.

This raises an interesting and important practical question:

Can we discover and formalize the conditions under which
avoiding RAW and AWAR, while ensuring correctness, is futile?

In this paper, we answer this question formally. We show that
implementations of a wide class of concurrent algorithms must
involve RAW or AWAR. In particular, we focus on two widely used

1 RAW order requires the use of explicit fences or atomic instructions
even on strongly ordered architectures (e.g., X86 and SPARC TSO) that
automatically guarantee other types of ordering (read after read, write after
read, and write after write).

Enabling better parallelism

76 COMMUNICATIONS OF THE ACM | MARCH 2011 | VOL. 54 | NO. 3

review articles

problems with regular, slow-changing
(or even static) communication and
coordination patterns. Such problems
arise in scientific computing or in
graphics, but rarely in systems.

The future promises us multiple
cores on anything from phones to lap-
tops, desktops, and servers, and there-
fore a plethora of applications char-
acterized by complex, fast-changing
interactions and data exchanges.

Why are these dynamic interactions
and data exchanges a problem? The
formula we need in order to answer this
question is called Amdahl’s Law. It cap-
tures the idea that the extent to which
we can speed up any complex computa-
tion is limited by how much of the com-
putation must be executed sequentially.

Define the speedup S of a computa-
tion to be the ratio between the time
it takes one processor to complete the
computation (as measured by a wall
clock) versus the time it takes n concur-
rent processors to complete the same
computation. Amdahl’s Law character-
izes the maximum speedup S that can
be achieved by n processors collaborat-
ing on an application, where p is the
fraction of the computation that can be
executed in parallel. Assume, for sim-
plicity, that it takes (normalized) time
1 for a single processor to complete the
computation. With n concurrent pro-
cessors, the parallel part takes time p/n,
and the sequential part takes time 1− p.
Overall, the parallelized computation
takes time 1− p + pn . Amdahl’s Law says
the speedup, that is, the ratio between

“M ULT IC OR E PROC ESSORS ARE about to revolutionize
the way we design and use data structures.”

You might be skeptical of this statement; after
all, are multicore processors not a new class of
multiprocessor machines running parallel programs,
just as we have been doing for more than a quarter
of a century?

The answer is no. The revolution is partly due to
changes multicore processors introduce to parallel
architectures; but mostly it is the result of the change
in the applications that are being parallelized:
multicore processors are bringing parallelism to
mainstream computing.

Before the introduction of multicore processors,
parallelism was largely dedicated to computational

 key insights
 We are experiencing a fundamental shift

in the properties required of concurrent
data structures and of the algorithms at
the core of their implementation.

 The data structures of our childhood—
stacks, queues, and heaps—will
soon disappear, replaced by looser
“unordered” concurrent constructs
based on distribution and randomization.

 Future software engineers will need
to learn how to program using these
novel structures, understanding
their performance benefits and their
fairness limitations.

Data
Structures
in the
Multicore Age

DOI:10.1145/1897852.1897873

The advent of multicore processors as the
standard computing platform will force major
changes in software design.

BY NIR SHAVIT

I
L

L
U

S
T

R
A

T
I

O
N

 B
Y

 A
N

D
Y

 G
I

L
M

O
R

E

Relaxing the correctness condition would allow
one to implement concurrent data structures
more efficiently, as they would be free of
synchronization bottlenecks.

Alternatives to linearizability
• Quiescent Consistency [Aspnes-al:JACM94]

• Quasi-Linearizability [Afek-al:OPODIS10]

• Quantitative Relaxation [Henzinger-al:POPL13]

• Quantitative Quiescent Consistency [Jagadeesan-Riely:ICALP14]

• Concurrency-Aware Linearizability [Hemed-Rinetzky:DISC15]

• Local Linearizability [Haas-al:CONCUR16]

• …

• Composing different conditions (CAL, QC, QQC)  
in a single program, which uses multiple objects;

• Providing syntactic proof methods for establishing all
these conditions (akin to linearization points);

• Employing these criteria for client-side reasoning  
(uniformity).

Challenges of diversity

Hoare-style Specifications as
Correctness Conditions  

for Non-Linearizable Concurrent Objects

OOPSLA 2016
November 2, 2016

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated
*

O
O
P
S
LA
*

Ar
tifact *

A
E
C

Ilya Sergey

biennial report
2008-09

madrid institute
for advanced studies

memoria software v3.qxd 13/8/10 10:48 Página 1

Aleks Nanevski  
Anindya Banerjee  

Germán Andrés Delbianco

Hoare-style Specifications

{ P } e { Q } @ C

precondition postcondition concurrent invariants 
and protocol

If the initial state satisfies P, then, after e
terminates, the final state satisfies Q  

(no matter the interference manifested by C).

Hoare-style Specifications

• Compositional — substitution principle;

• Syntactic proof method — inference rules;

• Uniform — reasoning about objects and their
clients in the same proof system.

{ P } e { Q } @ C

Hoare-style Specifications

{ P } e { Q } @ C

• Compositional — substitution principle;

• Syntactic proof method — inference rules;

• Uniform — reasoning about objects and their
clients in the same proof system.

Live

Rich

Two-sided

This work: Hoare-style specs as CAL, QC, QQC

Concurrency-Aware Linearizability (CAL):
Effects of some concurrent method calls should  
appear to happen simultaneously.

Quiescent Consistency (QC):
Method calls separated by a period of no interference
(quiescence) should appear to take effect in their order.

Quantitative Quiescent Consistency (QQC):
The number of out-of-order method results is bounded  
by the number of interfering threads (with a constant factor).

This talk

Simple Counting Network

def getAndInc() : nat

 = {
 n ← &x;
 b ← CAS(x, n, n + 1);
 if b then
 return n;
 else getAndInc();
}

def getAndInc() : nat

high contention location

Simple Counting Network

Simple Counting Network

def getAndInc() : nat = {
 b ← flip(bal);
 res ← fetchAndAdd2(x + b);
 return res;
}

b

bal
n0

n1

x

x+1

0

1

Sequential Execution (T1)

def getAndInc() : nat = {
 b ← flip(bal);
 res ← fetchAndAdd2(x + b);
 return res;
}

0

bal
0

1

x

x+1

def getAndInc() : nat = {
 b ← flip(bal);
 res ← fetchAndAdd2(x + b);
 return res;
}

1

bal
0

1

x

x+1

0

T1.b1 = 0

Sequential Execution (T1)

def getAndInc() : nat = {
 b ← flip(bal);
 res ← fetchAndAdd2(x + b);
 return res;
}

1

bal
2

1

x

x+1

T1.res1 = 0
T1.b1 = 0

Sequential Execution (T1)

def getAndInc() : nat = {
 b ← flip(bal);
 res ← fetchAndAdd2(x + b);
 return res;
}

0

bal
2

1

x

x+1
1

T1.res1 = 0
T1.b1 = 0

T1.b2 = 1

Sequential Execution (T1)

def getAndInc() : nat = {
 b ← flip(bal);
 res ← fetchAndAdd2(x + b);
 return res;
}

0

bal
2

3

x

x+1

T1.res1 = 0

T1.res2 = 1

T1.b1 = 0

T1.b2 = 1

Sequential Execution (T1)

Concurrent Execution (T1, T2)

def getAndInc() : nat = {
 b ← flip(bal);
 res ← fetchAndAdd2(x + b);
 return res;
}

0

bal
0

1

x

x+1

def getAndInc() : nat = {
 b ← flip(bal);
 res ← fetchAndAdd2(x + b);
 return res;
}

1

bal
0

1

x

x+1

0

T1.b1 = 0

Concurrent Execution (T1, T2)

def getAndInc() : nat = {
 b ← flip(bal);
 res ← fetchAndAdd2(x + b);
 return res;
}

0

bal
0

1

x

x+1
1

T1.b1 = 0
T2.b1 = 1

Concurrent Execution (T1, T2)

def getAndInc() : nat = {
 b ← flip(bal);
 res ← fetchAndAdd2(x + b);
 return res;
}

0

bal
0

3

x

x+1
T2.res1 = 1

T1.b1 = 0
T2.b1 = 1

Concurrent Execution (T1, T2)

def getAndInc() : nat = {
 b ← flip(bal);
 res ← fetchAndAdd2(x + b);
 return res;
}

1

bal
0

3

x

x+1

T1.b1 = 0
T2.b1 = 1
T2.res1 = 1
T2.b2 = 0

0

Concurrent Execution (T1, T2)

def getAndInc() : nat = {
 b ← flip(bal);
 res ← fetchAndAdd2(x + b);
 return res;
}

1

bal
2

3

x

x+1

T1.b1 = 0
T2.b1 = 1
T2.res1 = 1
T2.b2 = 0
T2.res2 = 0

Concurrent Execution (T1, T2)

Correctness Conditions for Counting Network

• R0: calls to getAndInc() take effect in their sequential order

• R1: different calls return distinct results (strong concurrent counter)

• R2: two calls, separated by period of quiescence, take effect in
their sequential order (QC)

• R3: results of two calls in the same thread are out of order by  
no more than 2 * (number of calls interfering with both) (QQC)

Observations about the Counting Network

• Every flip of the balancer grants thread a capability  
to add 2 to a counter (x or x+1);

• Each of the counters (x and x+1) changes continuously
wrt. even/odd values

“Histories”

“Tokens”

Real and Auxiliary State
• Hoare-style specs constrain state, auxiliary or real

• Real state — heap (pointers bal, x, x+1);

• Auxiliary state — any fictional splittable resource:

✦ Token sets (τ) — disjoint sets;

✦ Histories (χ) — partial maps with nat as domain.

Auxiliary State of the Network

0 2 4 6

1 3 5

history of the counter x

history of the counter x+1

z0

u1

y0v0

tokens of
pending threads

1

current value
of the balancer

Tokens =  
pending updates

Histories =  
observed updates

χ = { …, n ↦ ι, … }

Interference-capturing histories

“timestamp”, a value written to a counter x or x+1 (0, 1, 2, etc.)

Interference-capturing histories

sets of tokens, held by interfering threads  
at the moment the entry has been written

χ = { …, n ↦ ι, … }

Notation for Subjective Histories and Tokens

• χ, χ — histories, contributed by this and other threads;  

• τ, τ — tokens, held by this and other threads

{ τ = ∅ }

Specification of getAndInc()

res ← getAndInc()

{∃ ι, τ′ = ∅,  
 χ′ = χ ∪ (res + 2) ↦ ι,
 τ ⊆ τ′ ∪ spent(χ′\ χ),
 last(χ ∪ χ) < res + 2 + 2 | ι ∩ τ |}

Specification of getAndInc()
no tokens held initially  

by this thread
{ τ = ∅ }

{∃ ι, τ′ = ∅,  
 χ′ = χ ∪ (res + 2) ↦ ι,
 τ ⊆ τ′ ∪ spent(χ′\ χ),
 last(χ ∪ χ) < res + 2 + 2 | ι ∩ τ |}

res ← getAndInc()

{∃ ι, τ′ = ∅,  
 χ′ = χ ∪ (res + 2) ↦ ι,
 τ ⊆ τ′ ∪ spent(χ′\ χ),
 last(χ ∪ χ) < res + 2 + 2 | ι ∩ τ |}

Specification of getAndInc()

Final tokens 
and self-history

{ τ = ∅ }
res ← getAndInc()

Specification of getAndInc()

Tokens don’t go missing

res ← getAndInc()

{∃ ι, τ′ = ∅,  
 χ′ = χ ∪ (res + 2) ↦ ι,
 τ ⊆ τ′ ∪ spent(χ′\ χ),
 last(χ ∪ χ) < res + 2 + 2 | ι ∩ τ |}

{ τ = ∅ }

Specification of getAndInc()

result + 2 is  
greater than any previous value 

in the history (modulo  
past ∩ present interference)

res ← getAndInc()

{∃ ι, τ′ = ∅,  
 χ′ = χ ∪ (res + 2) ↦ ι,
 τ ⊆ τ′ ∪ spent(χ′\ χ),
 last(χ ∪ χ) < res + 2 + 2 | ι ∩ τ |}

{ τ = ∅ }

What this spec is good for?

• R1: different calls return distinct results (strong concurrent counter)

• R2: two calls, separated by period of quiescence, take effect in
their sequential order (QC)

• R3: results of two calls in the same thread are out of order by  
no more than 2 * (number of calls interfering with both) (QQC)

Each result corresponds to a fresh history entry

Implications of the spec for getAndInc

• R1: different calls return distinct results (strong concurrent counter)

• R2: two calls, separated by period of quiescence, take effect in
their sequential order (QC)

• R3: results of two calls in the same thread are out of order by  
no more than 2 * (number of calls interfering with both) (QQC)

Implications of the spec for getAndInc

Exercising Quiescent Consistency

(res1, -) ← (getAndInc() || e1);

(res2, -) ← (getAndInc() || e2);

return (res1, res2);

“quiescent moment”

{ ¿ res1 < res2 ? }

Specification of interfering program

e1

{ τ = ∅, χ = ∅ }

{∃ η1, τ = ∅, χ = η1, τ ⊆ τ′∪ spent(χ′\χ) }

adds an arbitrary number of history entries

Spec for parallel composition

{ τ = ∅ }

 {∃ ι, η1, τ = ∅,  
 χ = χ ∪ η1 ∪ (res1+2) ↦ ι,  
 τ ⊆ τ′ ∪ spent(χ′\χ),  
 last(χ ∪ χ) < res1 + 2 + 2 | ι ∩ τ |}

(res1, -) ← getAndInc() || e1

Spec for parallel composition

{ τ = ∅ }

 {∃ ι, η1, τ = ∅,  
 χ = χ ∪ η1 ∪ (res1+2) ↦ ι,  
 τ ⊆ τ′ ∪ spent(χ′\χ),  
 last(χ ∪ χ) < res1 + 2 + 2 | ι ∩ τ |}

(res1, -) ← getAndInc() || e1

(res2, -) ← getAndInc() || e2;

return (res1, res2);

(res1, -) ← getAndInc() || e1;

(res1, -) ← getAndInc() || e1;

(res2, -) ← getAndInc() || e2;

 
 
 

return (res1, res2);

(res1, -) ← getAndInc() || e1;

(res2, -) ← getAndInc() || e2;

 
 
 

return (res1, res2);

{ τ = ∅ }

{ ∃ η1, τ = ∅,
 χ′ = χ ∪ η1 ∪ (res1+2 ↦ -),
 χ ⊆ χ′ }

{∃ η1,η2, ι, τ = ∅, 
 χ′′ = χ ∪ η1 ∪ η2 ∪ (res1+2 ↦ -) ∪ (res2+2 ↦ -), 
 τ′⊆ τ′′ ∪ spent(χ′′\χ′),
 last(χ′′ ∪ χ′) < res2 + 2 + 2 | ι ∩ τ′ |}

{ τ = ∅ }

{ ∃ η1, τ = ∅,
 χ′ = χ ∪ η1 ∪ (res1+2 ↦ -),
 χ ⊆ χ′ }

{∃ η1,η2, ι, τ = ∅, 
 χ′′ = χ ∪ η1 ∪ η2 ∪ (res1+2 ↦ -) ∪ (res2+2 ↦ -), 
 τ′⊆ τ′′ ∪ spent(χ′′\χ′),
 last(χ′′ ∪ χ′) < res2 + 2 + 2 | ι ∩ τ′ |}

(res1, -) ← getAndInc() || e1;

(res2, -) ← getAndInc() || e2;

 
 
 

return (res1, res2);

{ τ = ∅ }

{ ∃ η1, τ = ∅,
 χ′ = χ ∪ η1 ∪ (res1+2 ↦ -),
 χ ⊆ χ′ }

{∃ η1,η2, ι, τ = ∅, 
 χ′′ = χ ∪ η1 ∪ η2 ∪ (res1+2 ↦ -) ∪ (res2+2 ↦ -), 
 τ′⊆ τ′′ ∪ spent(χ′′\χ′),
 last(χ′′ ∪ χ′) < res2 + 2 + 2 | ι ∩ τ′ |}

(res1, -) ← getAndInc() || e1;

(res2, -) ← getAndInc() || e2;

 
 
 

return (res1, res2);

{ τ = ∅ }

{ ∃ η1, τ = ∅,
 χ′ = χ ∪ η1 ∪ (res1+2 ↦ -),
 χ ⊆ χ′ }

{∃ η1,η2, ι, τ = ∅, 
 χ′′ = χ ∪ η1 ∪ η2 ∪ (res1+2 ↦ -) ∪ (res2+2 ↦ -), 
 τ′⊆ τ′′ ∪ spent(χ′′\χ′),
 last(χ′′ ∪ χ′) < res2 + 2 + 2 | ι ∩ τ′ |}

No more forked threads
at this point!

(res1, -) ← getAndInc() || e1;

(res2, -) ← getAndInc() || e2;

 
 
 

return (res1, res2);

{∃ η1,η2, ι, τ = ∅, 
 χ′′ = χ ∪ η1 ∪ η2 ∪ (res1+2 ↦ -) ∪ (res2+2 ↦ -), 
 τ′⊆ ∅ ∪ spent(∅),
 last(χ′′ ∪ χ′) < res2 + 2 + 2 | ι ∩ τ′ |}

{ τ = ∅ }

{ ∃ η1, τ = ∅,
 χ′ = χ ∪ η1 ∪ (res1+2 ↦ -),
 χ ⊆ χ′ }

(res1, -) ← getAndInc() || e1;

(res2, -) ← getAndInc() || e2;

 
 
 

return (res1, res2);

{∃ η1,η2, ι, τ = ∅, 
 χ′′ = χ ∪ η1 ∪ η2 ∪ (res1+2 ↦ -) ∪ (res2+2 ↦ -), 
 τ′= ∅,
 last(χ′′ ∪ χ′) < res2 + 2 + 2 | ι ∩ τ′ |}

{ τ = ∅ }

{ ∃ η1, τ = ∅,
 χ′ = χ ∪ η1 ∪ (res1+2 ↦ -),
 χ ⊆ χ′ }

(res1, -) ← getAndInc() || e1;

(res2, -) ← getAndInc() || e2;

 
 
 

return (res1, res2);

{∃ η1,η2, ι, τ = ∅, 
 χ′′ = χ ∪ η1 ∪ η2 ∪ (res1+2 ↦ -) ∪ (res2+2 ↦ -), 
 τ′= ∅,
 last(χ′′ ∪ χ′) < res2 + 2 + 2 | ι ∩ τ′ |}

{ τ = ∅ }

{ ∃ η1, τ = ∅,
 χ′ = χ ∪ η1 ∪ (res1+2 ↦ -),
 χ ⊆ χ′ }

(res1, -) ← getAndInc() || e1;

(res2, -) ← getAndInc() || e2;

 
 
 

return (res1, res2);

{∃ η1,η2, ι, τ = ∅, 
 χ′′ = χ ∪ η1 ∪ η2 ∪ (res1+2 ↦ -) ∪ (res2+2 ↦ -), 
 τ′= ∅,
 last(χ′′ ∪ χ′) < res2 + 2 + 2 | ι ∩ ∅ |}

{ τ = ∅ }

{ ∃ η1, τ = ∅,
 χ′ = χ ∪ η1 ∪ (res1+2 ↦ -),
 χ ⊆ χ′ }

(res1, -) ← getAndInc() || e1;

(res2, -) ← getAndInc() || e2;

 
 
 

return (res1, res2);

{∃ η1,η2, ι, τ = ∅, 
 χ′′ = χ ∪ η1 ∪ η2 ∪ (res1+2 ↦ -) ∪ (res2+2 ↦ -), 
 τ′= ∅,
 last(χ′′ ∪ χ′) < res2 + 2 + 2 | ∅ |}

{ τ = ∅ }

{ ∃ η1, τ = ∅,
 χ′ = χ ∪ η1 ∪ (res1+2 ↦ -),
 χ ⊆ χ′ }

(res1, -) ← getAndInc() || e1;

(res2, -) ← getAndInc() || e2;

 
 
 

return (res1, res2);

{∃ η1,η2, ι, τ = ∅, 
 χ′′ = χ ∪ η1 ∪ η2 ∪ (res1+2 ↦ -) ∪ (res2+2 ↦ -), 
 τ′= ∅,
 last(χ′′ ∪ χ′) < res2 + 2 }

{ τ = ∅ }

{ ∃ η1, τ = ∅,
 χ′ = χ ∪ η1 ∪ (res1+2 ↦ -),
 χ ⊆ χ′ }

(res1, -) ← getAndInc() || e1;

(res2, -) ← getAndInc() || e2;

 
 
 

return (res1, res2);

{∃ η1,η2, ι, τ = ∅, 
 χ′′ = χ ∪ η1 ∪ η2 ∪ (res1+2 ↦ -) ∪ (res2+2 ↦ -), 
 τ′= ∅,
 last(χ′′ ∪ χ′) < res2 + 2 }

{ τ = ∅ }

{ ∃ η1, τ = ∅,
 χ′ = χ ∪ η1 ∪ (res1+2 ↦ -),
 χ ⊆ χ′ }

(res1, -) ← getAndInc() || e1;

(res2, -) ← getAndInc() || e2;

 
 
 

return (res1, res2);

{∃ η1,η2, ι, τ = ∅, 
 χ′′ = χ ∪ η1 ∪ η2 ∪ (res1+2 ↦ -) ∪ (res2+2 ↦ -), 
 τ′= ∅,
 last(χ′′ ∪ χ′) < res2 + 2 }

{ τ = ∅ }

{ ∃ η1, τ = ∅,
 χ′ = χ ∪ η1 ∪ (res1+2 ↦ -),
 χ ⊆ χ′ }

(res1, -) ← getAndInc() || e1;

(res2, -) ← getAndInc() || e2;

 
 
 

return (res1, res2);

{∃ η1,η2, ι, τ = ∅, 
 χ′′ = χ ∪ η1 ∪ η2 ∪ (res1+2 ↦ -) ∪ (res2+2 ↦ -), 
 τ′= ∅,
 res1 + 2 < res2 + 2 }

{ τ = ∅ }

{ ∃ η1, τ = ∅,
 χ′ = χ ∪ η1 ∪ (res1+2 ↦ -),
 χ ⊆ χ′ }

(res1, -) ← getAndInc() || e1;

(res2, -) ← getAndInc() || e2;

 
 
 

return (res1, res2);

{∃ η1,η2, ι, τ = ∅, 
 χ′′ = χ ∪ η1 ∪ η2 ∪ (res1+2 ↦ -) ∪ (res2+2 ↦ -), 
 τ′= ∅,
 res1 < res2 }

{ τ = ∅ }

{ ∃ η1, τ = ∅,
 χ′ = χ ∪ η1 ∪ (res1+2 ↦ -),
 χ ⊆ χ′ }

(res1, -) ← getAndInc() || e1;

(res2, -) ← getAndInc() || e2;

 
 
 

return (res1, res2);

• R1: different calls return distinct results (strong concurrent counter)

• R2: two calls, separated by period of quiescence, take effect in
their sequential order (QC)

• R3: results of two calls in the same thread are out of order by  
no more than 2 * (number of calls interfering with both) (QQC)

Implications of the spec for getAndInc

Summary of the proof pattern

• Express interference that matters via auxiliary state — tokens;

• Capture past interference and results in auxiliary histories;

• Assume closed world to bound interference (quiescence).

• Full formal specification of the counting network;

• Formal proofs of QC and QQC properties for the network;

• Discussion on applying the technique for QC-queues;

• Spec and verification of java.util.concurrent.Exchanger;

• Verification of an exchanger client in the spirit of
concurrency-aware linearizability (CAL).

• Report on implementation in FCSL/Coq.

What’s in the paper

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*

O
O
P
S
LA
*

Ar
tifact *

A
E
C

To take away

• Compositional — substitution principle;

• Syntactic proof method — inference rules;

• Uniform — reasoning about objects and their
clients in the same proof system.

Hoare-style Specifications 
for Non-linearizable Concurrent Objects

Thanks!

Good specification is in the eye of the beholder.

