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Linearizable Concurrent Objects

Nоn-overlapping calls to methods of a concurrent object  
should appear to take effect in their sequential order.

Linearizability: A Correctness Condition for 
Concurrent Objects 
MAURICE P. HERLIHY and JEANNETTE M. WING 
Carnegie Mellon University 

A concurrent object is a data object shared by concurrent processes. Linearizability is a correctness 
condition for concurrent objects that exploits the semantics of abstract data types. It permits a high 
degree of concurrency, yet it permits programmers to specify and reason about concurrent objects 
using known techniques from the sequential domain. Linearizability provides the illusion that each 
operation applied by concurrent processes takes effect instantaneously at some point between its 
invocation and its response, implying that the meaning of a concurrent object’s operations can be 
given by pre- and post-conditions. This paper defines linearizability, compares it to other correctness 
conditions, presents and demonstrates a method for proving the correctness of implementations, and 
shows how to reason about concurrent objects, given they are linearizable. 

Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concurrent Programming; 
D.2.1 [Software Engineering]: Requirements/Specifications; D.3.3 [Programming Lan- 
guages]: Language Constructs--abstract data types, concurrent programming structures, data types 
and structures; F.1.2 [Computation by Abstract Devices]: Modes of Computation-parallelism; 
F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and Reasoning about 
Programs-pre- and post-conditions, specification techniques 

General Terms: Theory, Verification 

Additional Key Words and Phrases: Concurrrency, correctness, Larch, linearizability, multi- 
processing, serializability, shared memory, specification 

1. INTRODUCTION 

1 .l Overview 
Informally, a concurrent system consists of a collection of sequential processes 
that communicate through shared typed objects. This model encompasses both 
message-passing architectures in which the shared objects are message queues, 
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Linearizability is expensive
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Abstract
Building correct and efficient concurrent algorithms is known to
be a difficult problem of fundamental importance. To achieve ef-
ficiency, designers try to remove unnecessary and costly synchro-
nization. However, not only is this manual trial-and-error process
ad-hoc, time consuming and error-prone, but it often leaves design-
ers pondering the question of: is it inherently impossible to elimi-
nate certain synchronization, or is it that I was unable to eliminate
it on this attempt and I should keep trying?

In this paper we respond to this question. We prove that it is im-
possible to build concurrent implementations of classic and ubiqui-
tous specifications such as sets, queues, stacks, mutual exclusion
and read-modify-write operations, that completely eliminate the
use of expensive synchronization.

We prove that one cannot avoid the use of either: i) read-after-
write (RAW), where a write to shared variable A is followed by a
read to a different shared variable B without a write to B in between,
or ii) atomic write-after-read (AWAR), where an atomic operation
reads and then writes to shared locations. Unfortunately, enforcing
RAW or AWAR is expensive on all current mainstream processors.
To enforce RAW, memory ordering–also called fence or barrier–
instructions must be used. To enforce AWAR, atomic instructions
such as compare-and-swap are required. However, these instruc-
tions are typically substantially slower than regular instructions.

Although algorithm designers frequently struggle to avoid RAW
and AWAR, their attempts are often futile. Our result characterizes
the cases where avoiding RAW and AWAR is impossible. On the
flip side, our result can be used to guide designers towards new
algorithms where RAW and AWAR can be eliminated.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]; E.1 [Data]: Data Structures

General Terms Algorithms, Theory
Keywords Concurrency, Algorithms, Lower Bounds, Memory
Fences, Memory Barriers

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
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1. Introduction
The design of concurrent applications that avoid costly synchro-
nization patterns is a cardinal programming challenge, requiring
consideration of algorithmic concerns and architectural issues with
implications to formal testing and verification.

Two common synchronization patterns that frequently arise in
the design of concurrent algorithms are read after write (RAW) and
atomic write after read (AWAR).

The RAW pattern consists of a process writing to some shared
variable A, followed by the same process reading a different shared
variable B, without that process writing to B in between. The
AWAR pattern consists of a process reading some shared variable
followed by the process writing to a shared variable (the write could
be to the same shared variable as the read), where the entire read-
write sequence is atomic. Examples of the AWAR pattern include
read-modify-write operations such as a Compare-and-Swap [26]
(CAS).

Unfortunately, on all mainstream processor architectures, the
RAW and AWAR patterns are associated with expensive instruc-
tions. Modern processor architectures use relaxed memory mod-
els, where guaranteeing RAW order among accesses to indepen-
dent memory locations requires the execution of memory order-
ing instructions–often called memory fences or memory barriers–
that enforce RAW order.1 Guaranteeing the atomicity of AWAR
requires the use of atomic instructions. Typically, fence and atomic
instructions are substantially slower than regular instructions, even
under the most favorable caching conditions.

Due to these high overheads, designers of concurrent algorithms
aim to avoid both RAW and AWAR patterns. However, such at-
tempts are often unsuccessful: in many cases, even after multiple
attempts, it turns out impossible to avoid these patterns while en-
suring correctness of the algorithm.

This raises an interesting and important practical question:

Can we discover and formalize the conditions under which
avoiding RAW and AWAR, while ensuring correctness, is futile?

In this paper, we answer this question formally. We show that
implementations of a wide class of concurrent algorithms must
involve RAW or AWAR. In particular, we focus on two widely used

1 RAW order requires the use of explicit fences or atomic instructions
even on strongly ordered architectures (e.g., X86 and SPARC TSO) that
automatically guarantee other types of ordering (read after read, write after
read, and write after write).



Enabling better parallelism
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problems with regular, slow-changing 
(or even static) communication and 
coordination patterns. Such problems 
arise in scientific computing or in 
graphics, but rarely in systems.

The future promises us multiple 
cores on anything from phones to lap-
tops, desktops, and servers, and there-
fore a plethora of applications char-
acterized by complex, fast-changing 
interactions and data exchanges.

Why are these dynamic interactions 
and data exchanges a problem? The 
formula we need in order to answer this 
question is called Amdahl’s Law. It cap-
tures the idea that the extent to which 
we can speed up any complex computa-
tion is limited by how much of the com-
putation must be executed sequentially.

Define the speedup S of a computa-
tion to be the ratio between the time 
it takes one processor to complete the 
computation (as measured by a wall 
clock) versus the time it takes n concur-
rent processors to complete the same 
computation. Amdahl’s Law character-
izes the maximum speedup S that can 
be achieved by n processors collaborat-
ing on an application, where p is the 
fraction of the computation that can be 
executed in parallel. Assume, for sim-
plicity, that it takes (normalized) time 
1 for a single processor to complete the 
computation. With n concurrent pro-
cessors, the parallel part takes time p/n, 
and the sequential part takes time 1− p. 
Overall, the parallelized computation 
takes time 1− p + pn . Amdahl’s Law says 
the speedup, that is, the ratio between 

“M ULT IC OR E  PROC ESSORS  ARE  about to revolutionize 
the way we design and use data structures.”

You might be skeptical of this statement; after 
all, are multicore processors not a new class of 
multiprocessor machines running parallel programs, 
just as we have been doing for more than a quarter  
of a century?

The answer is no. The revolution is partly due to 
changes multicore processors introduce to parallel 
architectures; but mostly it is the result of the change 
in the applications that are being parallelized: 
multicore processors are bringing parallelism to 
mainstream computing.

Before the introduction of multicore processors, 
parallelism was largely dedicated to computational 

 key insights
  We are experiencing a fundamental shift 

in the properties required of concurrent 
data structures and of the algorithms at 
the core of their implementation.

  The data structures of our childhood—
stacks, queues, and heaps—will 
soon disappear, replaced by looser 
“unordered” concurrent constructs  
based on distribution and randomization.

  Future software engineers will need 
to learn how to program using these  
novel structures, understanding  
their performance benefits and their 
fairness limitations.

Data 
Structures  
in the 
Multicore Age

DOI:10.1145/1897852.1897873

The advent of multicore processors as the 
standard computing platform will force major 
changes in software design.
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Relaxing the correctness condition would allow 
one to implement concurrent data structures 
more efficiently, as they would be free of 
synchronization bottlenecks.



Alternatives to linearizability
• Quiescent Consistency [Aspnes-al:JACM94] 

• Quasi-Linearizability [Afek-al:OPODIS10] 

• Quantitative Relaxation [Henzinger-al:POPL13] 

• Quantitative Quiescent Consistency [Jagadeesan-Riely:ICALP14] 

• Concurrency-Aware Linearizability [Hemed-Rinetzky:DISC15] 

• Local Linearizability [Haas-al:CONCUR16] 

• …



• Composing different conditions (CAL, QC, QQC)  
in a single program, which uses multiple objects; 

• Providing syntactic proof methods for establishing all 
these conditions (akin to linearization points); 

• Employing these criteria for client-side reasoning  
(uniformity).

Challenges of diversity
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Hoare-style Specifications

{ P }  e  { Q } @ C

precondition postcondition concurrent invariants 
and protocol

If the initial state satisfies P, then, after e 
terminates, the final state satisfies Q  

(no matter the interference manifested by C).



Hoare-style Specifications

• Compositional — substitution principle; 

• Syntactic proof method — inference rules; 

• Uniform — reasoning about objects and their 
clients in the same proof system.

{ P }  e  { Q } @ C



Hoare-style Specifications

{ P }  e  { Q } @ C

• Compositional — substitution principle; 

• Syntactic proof method — inference rules; 

• Uniform — reasoning about objects and their 
clients in the same proof system.

Live

Rich

Two-sided



This work: Hoare-style specs as CAL, QC, QQC

Concurrency-Aware Linearizability (CAL):
Effects of some concurrent method calls should  
appear to happen simultaneously.

Quiescent Consistency (QC):
Method calls separated by a period of no interference   
(quiescence) should appear to take effect in their order.

Quantitative Quiescent Consistency (QQC):
The number of out-of-order method results is bounded  
by the number of interfering threads (with a constant factor).

This talk



Simple Counting Network

def getAndInc() : nat



                      = {
   n ← &x;
   b ← CAS(x, n, n + 1); 
   if b then
     return n;
   else getAndInc();
}

def getAndInc() : nat

high contention location

Simple Counting Network



Simple Counting Network

def getAndInc() : nat = {
   b   ← flip(bal);
   res ← fetchAndAdd2(x + b); 
   return res;
}

b

bal
n0

n1

x

x+1

0

1



Sequential Execution (T1)

def getAndInc() : nat = {
   b   ← flip(bal);
   res ← fetchAndAdd2(x + b); 
   return res;
}

0

bal
0

1

x

x+1



def getAndInc() : nat = {
   b   ← flip(bal);
   res ← fetchAndAdd2(x + b); 
   return res;
}

1

bal
0

1

x

x+1

0

T1.b1 = 0

Sequential Execution (T1)



def getAndInc() : nat = {
   b   ← flip(bal);
   res ← fetchAndAdd2(x + b); 
   return res;
}

1

bal
2

1

x

x+1

T1.res1 = 0
T1.b1 = 0

Sequential Execution (T1)



def getAndInc() : nat = {
   b   ← flip(bal);
   res ← fetchAndAdd2(x + b); 
   return res;
}

0

bal
2

1

x

x+1
1

T1.res1 = 0
T1.b1 = 0

T1.b2 = 1

Sequential Execution (T1)



def getAndInc() : nat = {
   b   ← flip(bal);
   res ← fetchAndAdd2(x + b); 
   return res;
}

0

bal
2

3

x

x+1

T1.res1 = 0

T1.res2 = 1

T1.b1 = 0

T1.b2 = 1

Sequential Execution (T1)



Concurrent Execution (T1, T2)

def getAndInc() : nat = {
   b   ← flip(bal);
   res ← fetchAndAdd2(x + b); 
   return res;
}

0

bal
0

1

x

x+1



def getAndInc() : nat = {
   b   ← flip(bal);
   res ← fetchAndAdd2(x + b); 
   return res;
}

1

bal
0

1

x

x+1

0

T1.b1 = 0

Concurrent Execution (T1, T2)



def getAndInc() : nat = {
   b   ← flip(bal);
   res ← fetchAndAdd2(x + b); 
   return res;
}

0

bal
0

1

x

x+1
1

T1.b1 = 0
T2.b1 = 1

Concurrent Execution (T1, T2)



def getAndInc() : nat = {
   b   ← flip(bal);
   res ← fetchAndAdd2(x + b); 
   return res;
}

0

bal
0

3

x

x+1
T2.res1 = 1

T1.b1 = 0
T2.b1 = 1

Concurrent Execution (T1, T2)



def getAndInc() : nat = {
   b   ← flip(bal);
   res ← fetchAndAdd2(x + b); 
   return res;
}

1

bal
0

3

x

x+1

T1.b1 = 0
T2.b1 = 1
T2.res1 = 1
T2.b2 = 0

0

Concurrent Execution (T1, T2)



def getAndInc() : nat = {
   b   ← flip(bal);
   res ← fetchAndAdd2(x + b); 
   return res;
}

1

bal
2

3

x

x+1

T1.b1 = 0
T2.b1 = 1
T2.res1 = 1
T2.b2 = 0
T2.res2 = 0

Concurrent Execution (T1, T2)



Correctness Conditions for Counting Network

• R0:  calls to getAndInc() take effect in their sequential order 

• R1:  different calls return distinct results (strong concurrent counter) 

• R2:  two calls, separated by period of quiescence, take effect in 
their sequential order (QC) 

• R3:  results of two calls in the same thread are out of order by  
no more than 2 * (number of calls interfering with both) (QQC)



Observations about the Counting Network

• Every flip of the balancer grants thread a capability  
to add 2 to a counter (x or x+1); 

• Each of the counters (x and x+1) changes continuously 
wrt. even/odd values

“Histories”

“Tokens”



Real and Auxiliary State
• Hoare-style specs constrain state, auxiliary or real 

• Real state — heap (pointers bal, x, x+1); 

• Auxiliary state — any fictional splittable resource: 

✦ Token sets (τ) — disjoint sets; 

✦ Histories (χ) — partial maps with nat as domain.



Auxiliary State of the Network

0 2 4 6

1 3 5

history of the counter x

history of the counter x+1 

z0

u1

y0v0

tokens of 
pending threads

1

current value
of the balancer

Tokens =  
pending updates

Histories =  
observed updates



χ = { …, n ↦ ι, … }

Interference-capturing histories

“timestamp”, a value written to a counter x or x+1 (0, 1, 2, etc.)



Interference-capturing histories

sets of tokens, held by interfering threads  
at the moment the entry has been written

χ = { …, n ↦ ι, … }



Notation for Subjective Histories and Tokens

• χ, χ — histories, contributed by this and other threads;  

• τ, τ — tokens, held by this and other threads



{ τ = ∅ }

Specification of getAndInc()

res ← getAndInc()

{∃ ι,  τ′ = ∅,   
        χ′ = χ ∪ (res + 2) ↦ ι, 
        τ ⊆ τ′ ∪ spent(χ′\ χ), 
        last(χ ∪ χ) < res + 2 + 2 | ι ∩ τ |}



Specification of getAndInc()
no tokens held initially  

by this thread
{ τ = ∅ }

{∃ ι,  τ′ = ∅,   
        χ′ = χ ∪ (res + 2) ↦ ι, 
        τ ⊆ τ′ ∪ spent(χ′\ χ), 
        last(χ ∪ χ) < res + 2 + 2 | ι ∩ τ |}

res ← getAndInc()



{∃ ι,  τ′ = ∅,   
        χ′ = χ ∪ (res + 2) ↦ ι, 
        τ ⊆ τ′ ∪ spent(χ′\ χ), 
        last(χ ∪ χ) < res + 2 + 2 | ι ∩ τ |}

Specification of getAndInc()

Final tokens 
and self-history 

{ τ = ∅ }
res ← getAndInc()



Specification of getAndInc()

Tokens don’t go missing

res ← getAndInc()

{∃ ι,  τ′ = ∅,   
        χ′ = χ ∪ (res + 2) ↦ ι, 
        τ ⊆ τ′ ∪ spent(χ′\ χ), 
        last(χ ∪ χ) < res + 2 + 2 | ι ∩ τ |}

{ τ = ∅ }



Specification of getAndInc()

result + 2 is  
greater than any previous value 

in the history (modulo  
past ∩ present interference)

res ← getAndInc()

{∃ ι,  τ′ = ∅,   
        χ′ = χ ∪ (res + 2) ↦ ι, 
        τ ⊆ τ′ ∪ spent(χ′\ χ), 
        last(χ ∪ χ) < res + 2 + 2 | ι ∩ τ |}

{ τ = ∅ }



What this spec is good for?



• R1:  different calls return distinct results (strong concurrent counter) 

• R2:  two calls, separated by period of quiescence, take effect in 
their sequential order (QC) 

• R3:  results of two calls in the same thread are out of order by  
no more than 2 * (number of calls interfering with both) (QQC)

Each result corresponds to a fresh history entry

Implications of the spec for getAndInc



• R1:  different calls return distinct results (strong concurrent counter) 

• R2:  two calls, separated by period of quiescence, take effect in 
their sequential order (QC) 

• R3:  results of two calls in the same thread are out of order by  
no more than 2 * (number of calls interfering with both) (QQC)

Implications of the spec for getAndInc



Exercising Quiescent Consistency

(res1, -) ← (getAndInc() || e1);
 
(res2, -) ← (getAndInc() || e2);

return (res1, res2);

“quiescent moment”

{ ¿ res1 < res2 ? }



Specification of interfering program

e1

{ τ = ∅,  χ = ∅  }

{∃ η1, τ = ∅,  χ = η1,  τ ⊆ τ′∪ spent(χ′\χ) }

adds an arbitrary number of history entries



Spec for parallel composition

{ τ = ∅ }

  {∃ ι, η1, τ = ∅,   
              χ = χ ∪ η1 ∪ (res1+2) ↦ ι,  
              τ ⊆ τ′ ∪ spent(χ′\χ),  
              last(χ ∪ χ) < res1 + 2 + 2 | ι ∩ τ |}

(res1, -) ← getAndInc() || e1



Spec for parallel composition

{ τ = ∅ }

  {∃ ι, η1, τ = ∅,   
              χ = χ ∪ η1 ∪ (res1+2) ↦ ι,  
              τ ⊆ τ′ ∪ spent(χ′\χ),  
              last(χ ∪ χ) < res1 + 2 + 2 | ι ∩ τ |}

(res1, -) ← getAndInc() || e1



 
(res2, -) ← getAndInc() || e2;

return (res1, res2);

(res1, -) ← getAndInc() || e1;



(res1, -) ← getAndInc() || e1;
 

(res2, -) ← getAndInc() || e2;

 
 
 

return (res1, res2);



(res1, -) ← getAndInc() || e1;
 

(res2, -) ← getAndInc() || e2;

 
 
 

return (res1, res2);

{ τ = ∅ }

{ ∃ η1, τ = ∅,   
           χ′ = χ ∪ η1 ∪ (res1+2 ↦ -),  
           χ ⊆ χ′ }

{∃ η1,η2, ι,   τ = ∅, 
                  χ′′ = χ ∪ η1 ∪ η2 ∪ (res1+2 ↦ -) ∪ (res2+2 ↦ -), 
                  τ′⊆ τ′′ ∪ spent(χ′′\χ′), 
                  last(χ′′ ∪ χ′) < res2 + 2 + 2 | ι ∩ τ′ |}



{ τ = ∅ }

{ ∃ η1, τ = ∅,   
           χ′ = χ ∪ η1 ∪ (res1+2 ↦ -),  
           χ ⊆ χ′ }

{∃ η1,η2, ι,   τ = ∅, 
                  χ′′ = χ ∪ η1 ∪ η2 ∪ (res1+2 ↦ -) ∪ (res2+2 ↦ -), 
                  τ′⊆ τ′′ ∪ spent(χ′′\χ′), 
                  last(χ′′ ∪ χ′) < res2 + 2 + 2 | ι ∩ τ′ |}

(res1, -) ← getAndInc() || e1;
 

(res2, -) ← getAndInc() || e2;

 
 
 

return (res1, res2);



{ τ = ∅ }

{ ∃ η1, τ = ∅,   
           χ′ = χ ∪ η1 ∪ (res1+2 ↦ -), 
           χ ⊆ χ′ }

{∃ η1,η2, ι,   τ = ∅, 
                  χ′′ = χ ∪ η1 ∪ η2 ∪ (res1+2 ↦ -) ∪ (res2+2 ↦ -), 
                  τ′⊆ τ′′ ∪ spent(χ′′\χ′), 
                  last(χ′′ ∪ χ′) < res2 + 2 + 2 | ι ∩ τ′ |}

(res1, -) ← getAndInc() || e1;
 

(res2, -) ← getAndInc() || e2;

 
 
 

return (res1, res2);



{ τ = ∅ }

{ ∃ η1, τ = ∅,   
           χ′ = χ ∪ η1 ∪ (res1+2 ↦ -),  
           χ ⊆ χ′ }

{∃ η1,η2, ι,   τ = ∅, 
                  χ′′ = χ ∪ η1 ∪ η2 ∪ (res1+2 ↦ -) ∪ (res2+2 ↦ -), 
                  τ′⊆ τ′′ ∪ spent(χ′′\χ′), 
                  last(χ′′ ∪ χ′) < res2 + 2 + 2 | ι ∩ τ′ |}

No more forked threads
at this point!

(res1, -) ← getAndInc() || e1;
 

(res2, -) ← getAndInc() || e2;

 
 
 

return (res1, res2);



{∃ η1,η2, ι,   τ = ∅, 
                  χ′′ = χ ∪ η1 ∪ η2 ∪ (res1+2 ↦ -) ∪ (res2+2 ↦ -), 
                  τ′⊆ ∅ ∪ spent(∅), 
                  last(χ′′ ∪ χ′) < res2 + 2 + 2 | ι ∩ τ′ |}

{ τ = ∅ }

{ ∃ η1, τ = ∅,   
           χ′ = χ ∪ η1 ∪ (res1+2 ↦ -),  
           χ ⊆ χ′ }

(res1, -) ← getAndInc() || e1;
 

(res2, -) ← getAndInc() || e2;

 
 
 

return (res1, res2);



{∃ η1,η2, ι,   τ = ∅, 
                  χ′′ = χ ∪ η1 ∪ η2 ∪ (res1+2 ↦ -) ∪ (res2+2 ↦ -), 
                  τ′= ∅, 
                  last(χ′′ ∪ χ′) < res2 + 2 + 2 | ι ∩ τ′ |}

{ τ = ∅ }

{ ∃ η1, τ = ∅,   
           χ′ = χ ∪ η1 ∪ (res1+2 ↦ -),  
           χ ⊆ χ′ }

(res1, -) ← getAndInc() || e1;
 

(res2, -) ← getAndInc() || e2;

 
 
 

return (res1, res2);



{∃ η1,η2, ι,   τ = ∅, 
                  χ′′ = χ ∪ η1 ∪ η2 ∪ (res1+2 ↦ -) ∪ (res2+2 ↦ -), 
                  τ′= ∅, 
                  last(χ′′ ∪ χ′) < res2 + 2 + 2 | ι ∩ τ′ |}

{ τ = ∅ }

{ ∃ η1, τ = ∅,   
           χ′ = χ ∪ η1 ∪ (res1+2 ↦ -),  
           χ ⊆ χ′ }

(res1, -) ← getAndInc() || e1;
 

(res2, -) ← getAndInc() || e2;

 
 
 

return (res1, res2);



{∃ η1,η2, ι,   τ = ∅, 
                  χ′′ = χ ∪ η1 ∪ η2 ∪ (res1+2 ↦ -) ∪ (res2+2 ↦ -), 
                  τ′= ∅, 
                  last(χ′′ ∪ χ′) < res2 + 2 + 2 | ι ∩ ∅ |}

{ τ = ∅ }

{ ∃ η1, τ = ∅,   
           χ′ = χ ∪ η1 ∪ (res1+2 ↦ -),  
           χ ⊆ χ′ }

(res1, -) ← getAndInc() || e1;
 

(res2, -) ← getAndInc() || e2;

 
 
 

return (res1, res2);



{∃ η1,η2, ι,   τ = ∅, 
                  χ′′ = χ ∪ η1 ∪ η2 ∪ (res1+2 ↦ -) ∪ (res2+2 ↦ -), 
                  τ′= ∅, 
                  last(χ′′ ∪ χ′) < res2 + 2 + 2 | ∅ |}

{ τ = ∅ }

{ ∃ η1, τ = ∅,   
           χ′ = χ ∪ η1 ∪ (res1+2 ↦ -),  
           χ ⊆ χ′ }

(res1, -) ← getAndInc() || e1;
 

(res2, -) ← getAndInc() || e2;

 
 
 

return (res1, res2);



{∃ η1,η2, ι,   τ = ∅, 
                  χ′′ = χ ∪ η1 ∪ η2 ∪ (res1+2 ↦ -) ∪ (res2+2 ↦ -), 
                  τ′= ∅, 
                  last(χ′′ ∪ χ′) < res2 + 2 }

{ τ = ∅ }

{ ∃ η1, τ = ∅,   
           χ′ = χ ∪ η1 ∪ (res1+2 ↦ -),  
           χ ⊆ χ′ }

(res1, -) ← getAndInc() || e1;
 

(res2, -) ← getAndInc() || e2;

 
 
 

return (res1, res2);



{∃ η1,η2, ι,   τ = ∅, 
                  χ′′ = χ ∪ η1 ∪ η2 ∪ (res1+2 ↦ -) ∪ (res2+2 ↦ -), 
                  τ′= ∅, 
                  last(χ′′ ∪ χ′) < res2 + 2 }

{ τ = ∅ }

{ ∃ η1, τ = ∅,   
           χ′ = χ ∪ η1 ∪ (res1+2 ↦ -),  
           χ ⊆ χ′ }

(res1, -) ← getAndInc() || e1;
 

(res2, -) ← getAndInc() || e2;

 
 
 

return (res1, res2);



{∃ η1,η2, ι,   τ = ∅, 
                  χ′′ = χ ∪ η1 ∪ η2 ∪ (res1+2 ↦ -) ∪ (res2+2 ↦ -), 
                  τ′= ∅, 
                  last(χ′′ ∪ χ′) < res2 + 2 }

{ τ = ∅ }

{ ∃ η1, τ = ∅,   
           χ′ = χ ∪ η1 ∪ (res1+2 ↦ -),  
           χ ⊆ χ′ }

(res1, -) ← getAndInc() || e1;
 

(res2, -) ← getAndInc() || e2;

 
 
 

return (res1, res2);



{∃ η1,η2, ι,   τ = ∅, 
                  χ′′ = χ ∪ η1 ∪ η2 ∪ (res1+2 ↦ -) ∪ (res2+2 ↦ -), 
                  τ′= ∅, 
                  res1 + 2 < res2 + 2 }

{ τ = ∅ }

{ ∃ η1, τ = ∅,   
           χ′ = χ ∪ η1 ∪ (res1+2 ↦ -),  
           χ ⊆ χ′ }

(res1, -) ← getAndInc() || e1;
 

(res2, -) ← getAndInc() || e2;

 
 
 

return (res1, res2);



{∃ η1,η2, ι,   τ = ∅, 
                  χ′′ = χ ∪ η1 ∪ η2 ∪ (res1+2 ↦ -) ∪ (res2+2 ↦ -), 
                  τ′= ∅, 
                  res1 < res2 }

{ τ = ∅ }

{ ∃ η1, τ = ∅,   
           χ′ = χ ∪ η1 ∪ (res1+2 ↦ -),  
           χ ⊆ χ′ }

(res1, -) ← getAndInc() || e1;
 

(res2, -) ← getAndInc() || e2;

 
 
 

return (res1, res2);



• R1:  different calls return distinct results (strong concurrent counter) 

• R2:  two calls, separated by period of quiescence, take effect in 
their sequential order (QC) 

• R3:  results of two calls in the same thread are out of order by  
no more than 2 * (number of calls interfering with both) (QQC)

Implications of the spec for getAndInc



Summary of the proof pattern

• Express interference that matters via auxiliary state — tokens; 

• Capture past interference and results in auxiliary histories; 

• Assume closed world to bound interference (quiescence).



• Full formal specification of the counting network; 

• Formal proofs of QC and QQC properties for the network; 

• Discussion on applying the technique for QC-queues; 

• Spec and verification of java.util.concurrent.Exchanger;

• Verification of an exchanger client in the spirit of 
concurrency-aware linearizability (CAL). 

• Report on implementation in FCSL/Coq.

What’s in the paper
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To take away

• Compositional — substitution principle; 

• Syntactic proof method — inference rules; 

• Uniform — reasoning about objects and their 
clients in the same proof system.

Hoare-style Specifications 
for Non-linearizable Concurrent Objects

Thanks!

Good specification is in the eye of the beholder.


