Modular, Higher-Order Cardinality Analysis in Theory and Practice

llya Sergey Dimitrios Vytiniotis Simon Peyton Jones

Microsoft Research

POPL 2014

A story of three program optimisations

Optimisation I

How many times a function is called?

(call cardinality)

Optimisation 2

"worker-wrapper" split

$$
f x=\text { case } x \text { of }(p, q)-><c b o d y\rangle
$$

Optimisation 2

"worker-wrapper"split

"wrapper", usually inlined on-site


```
\[
f x=\text { case } x \text { of }(p, q) \rightarrow f w p q
\]
fw p q = <cbody>
```

"worker"

Optimisation 2

"worker-wrapper"split

What if q is never used in <cbody>?

$$
\begin{aligned}
& \mathrm{fx}=\text { case } \mathrm{x} \text { of }(\mathrm{p}, \mathrm{q})->\mathrm{fw} \mathrm{p} \\
& \mathrm{fw} \mathrm{p}=\text { <cbody> }
\end{aligned}
$$

Don't have to pass q to fw!

Which parts of a data structure are certainly not used?

(absence)

Optimisation 3 smart memoization

Will be used exactly once: no need to memoize!

Which parts
 of a data structure
 are used no more than once?

(thunk cardinality)

Cardinality Analysis

- Call cardinality

- Absence
- Thunk cardinality

Usage demands

(how a value is used)

call demand

Usage demands

$$
d::=C^{n}(d)\left|U\left(d_{1}^{\dagger}, d_{2}^{\dagger}\right)\right| U
$$

Cardinality demands

$$
d^{\dagger} \quad::=A \mid n * d
$$

Usage cardinalities $\quad n \quad::=1 \mid \omega$

tuple demand

Usage demands

$$
d::=C^{n}(d)\left|U\left(d_{1}^{\dagger}, d_{2}^{\dagger}\right)\right| U
$$

Cardinality demands

$$
d^{\dagger} \quad::=A \mid n * d
$$

Usage cardinalities $\quad n \quad::=1 \mid \omega$

general demand

Usage demands

$$
d \quad::=\quad C^{n}(d)\left|U\left(d_{1}^{\dagger}, d_{2}^{\dagger}\right)\right| U
$$

Cardinality demands $\quad d^{\dagger} \quad:=A \mid n * d$

Usage cardinalities $\quad n \quad::=1 \mid \omega$

Usage demands

$$
d \quad::=\quad C^{n}(d)\left|U\left(d_{1}^{\dagger}, d_{2}^{\dagger}\right)\right| U
$$

absent value
Cardinality demands

$$
d^{\dagger} \quad::=\text { A } n * d
$$

Usage cardinalities $\quad n::=1 \mid \omega$

$$
n::=1 \mid \omega
$$

Usage demands

$$
d::=C^{n}(d)\left|U\left(d_{1}^{\dagger}, d_{2}^{\dagger}\right)\right| U
$$

used at most n times

Cardinality demands

$$
d^{\dagger}::=A, n * d
$$

Usage cardinalities $\quad n::=1 \mid \omega$

Usage Types

(how a function uses its arguments)
wurble1 : : $\omega * U \rightarrow C^{\omega}\left(C^{1}(U)\right) \rightarrow \bullet$ wurble1 $a g=g 2 a+g 3 a$
wurble1 : : $\quad \omega * U \rightarrow C^{\omega}\left(C^{1}(U)\right) \rightarrow \bullet$ wurble1 $a \mathrm{~g}=\mathrm{g} 2 \mathrm{a}+\mathrm{g} 3 \mathrm{a}$
wurble2 : : $\omega * U \rightarrow C^{1}\left(C^{\omega}(U)\right) \rightarrow \bullet$
wurble2 a $g=\operatorname{sum}(\operatorname{map}(g a) \quad[1 . .1000])$
wurble2 : : $\quad \omega * U \rightarrow C^{1}\left(C^{\omega}(U)\right) \rightarrow \bullet$
wurble2 a $g=\operatorname{sum}(\operatorname{map}$ (g) a) [1..1000])
f $: \quad 1 * U(1 * U, A) \rightarrow \bullet$
$f x=$ case x of (p, q) $->p+1$

Usage type depends on a usage context!

(result demand determines argument demands)

Backwards Analysis

Infers demand type basing on a context

$$
P \mapsto e \downarrow d \Rightarrow\langle\tau ; \varphi\rangle
$$

$$
P \mapsto e \downarrow d \Rightarrow\langle\tau ; \varphi\rangle
$$

- P - signature environment, maps some of free variables of e to their demand signatures (i.e., keeps some contextual information)
- d - usage demand, describes the degree to which e is evaluated
- τ - demand type, usages that e places on its arguments
- φ - fv-usage, usages that e places on its free variables

$C^{1}(U)$

$e=\lambda x$. case x of $(p, q) \rightarrow(p, f$ True $)$

$$
e=\lambda x . \text { case } x \text { of }(p, q) \rightarrow(p, f \text { True }
$$

$\epsilon \mapsto e \downarrow C^{1}(U) \Rightarrow \underbrace{\langle * U(\omega * U, A) \rightarrow \bullet}_{\mathcal{T}} ; \underbrace{\left.f \mapsto 1 * C^{1}(U)\right\}}_{\varphi}\rangle$

Each function is a

 backwards demand transformer it transforms a context demand to argument demands and fv-demands.

We cannot compute best argument demands for all contexts:
need to approximate.

Demand Lattice

Each function is

a monotone backwards demand transformer.

Exploiting demand monotonicity

Analysis-based annotations

$$
P \mapsto e \downarrow d \Rightarrow\langle\tau ; \varphi\rangle
$$

Elaboration

$$
P \mapsto e \downarrow d \Rightarrow\langle\tau ; \varphi\rangle \rightsquigarrow \mathrm{e}
$$

- let-bindings in e are annotated with $\mathbf{m} \in\{\mathbf{0}, \mathbf{1}, \boldsymbol{\omega}\}$ to indicate how often the let binding is evaluated;
- Each Lambda $\lambda^{n} \times . e_{\text {I }}$ in e carries an annotation $\mathbf{n} \in\{\mathbf{1}, \boldsymbol{\omega}\}$ to indicate how often the lambda is called.
$\epsilon \mapsto$ let $f=\lambda x . \lambda y . x$ True in $f p q \downarrow C^{1}(U)$

$$
\Rightarrow\left\langle\bullet ;\left\{p \mapsto 1 * C^{1}(U), q \mapsto A\right\}\right\rangle
$$

let $f \stackrel{1}{=} \lambda^{1} x \cdot \lambda^{1} y$. x True in $f p q$

Soundness

Restricted operational semantics

(makes sure that the annotations are respected)

Cardinality-enabled optimisations

I. Let-in floating optimisation

let $z \stackrel{m_{1}}{=} \mathrm{e}_{1}$ in $\left(\operatorname{let} f \stackrel{m_{2}}{=} \lambda^{1} x . \mathrm{e}\right.$ in $\left.\mathrm{e}_{2}\right)$

$$
\begin{aligned}
& \operatorname{let} z \stackrel{m_{1}}{=} \mathrm{e}_{1} \\
& \text { in }\left(\operatorname{let} f \stackrel{m_{2}}{=} \sqrt{1} x . \mathrm{e} \text { in } \mathrm{e}_{2}\right) \\
& \Longrightarrow \operatorname{let} f \stackrel{m_{2}}{=} \sqrt{1} x \cdot\left(\operatorname{let} z \stackrel{m_{1}}{=} \mathrm{e}_{1} \text { in e) in } \mathrm{e}_{2},\right.
\end{aligned}
$$

for any m_{1}, m_{2} and $z \notin F V\left(\mathrm{e}_{2}\right)$.

Improvement Theorem I

Let-in floating
does not increase the number
of execution steps.

2. Smart execution
e_{1}

Optimised CBN Machine

Sestoft:JFP97

$$
\left\langle\mathrm{H}_{1}, \mathrm{e}_{1}, \mathrm{~S}_{1}\right\rangle \Longrightarrow \ldots\left\langle\mathrm{H}_{n}, \mathrm{e}_{n}, \mathrm{~S}_{n}\right\rangle
$$

- 1-annotated bindings are not memoised;
- 0-annotated bindings are skipped.

Improvement Theorem 2

Optimising semantics

works faster on elaborated expressions and produces coherent results.

Implementation and Evaluation

- The analysis and optimisations are implemented in Glasgow Haskell Compiler (GHC v7.8 and newer): http://github.com/ghc/ghc
- Added 250 LOC to 140 KLOC compiler;
- Runs simultaneously with the strictness analyser;
- Evaluated on
- nofib benchmark suite,
- various hackage libraries,
- the Benchmark Game programs,
- GHC itself.

Results on nofib

Program	Synt. λ^{1}	Synt. Thnk 1	RT Thnk 1
anna	4.0%	7.2%	2.9%
bspt	5.0%	15.4%	1.5%
cacheprof	7.6%	11.9%	5.1%
calendar	5.7%	0.0%	0.2%
constraints	2.0%	3.2%	4.5%
.. and 72 more programs Arithmetic mean 10.3%			

* as linked and run with libraries

Results on nofib

	Allocs		Runtime	
	No hack	Hack	No hack	Hack
anna	-2.1%	-0.2%	$+0.1 \%$	-0.0%
bspt	-2.2%	-0.0%	-0.0%	$+0.0 \%$
cacheprof	-7.9%	-0.6%	-6.1%	-5.0%
calendar	-9.2%	$+0.2 \%$	-0.0%	-0.0%
constraints	-0.9%	-0.0%	-1.2%	-0.2%
\ldots and 72 more programs				
Min	-95.5%	-10.9%	-28.2%	-12.1%
Max	$+3.5 \%$	$+0.5 \%$	$+1.8 \%$	$+2.8 \%$
Geometric mean	-6.0%	-0.3%	-2.2%	-1.4%

The hack (due to A. Gill): hardcode argument cardinalities for build, foldr and runst.

Compiling with optimised GHC

- We compiled GHC itself with cardinality optimisations;
- Then we measured improvement in compilation runtimes.

Program	LOC	GHC Alloc Δ		GHC RT Δ	
		No hack	Hack	No hack	Hack
anna	5740	-1.6%	-1.5%	-0.8%	-0.4%
cacheprof	1600	-1.7%	-0.4%	-2.3%	-1.8%
fluid	1579	-1.9%	-1.9%	-2.8%	-1.6%
gamteb	1933	-0.5%	-0.1%	-0.5%	-0.1%
parser	2379	-0.7%	-0.2%	-2.6%	-0.6%
veritas	4674	-1.4%	-0.3%	-4.5%	-4.1%

To take away

- Cardinality analysis is simple to design and understand: it's all about usage demands and demand transformers;
- It is cheap to implement: we added only 250 LOC to GHC;
- It is conservative, which makes it fast and modular;
- Call demands make it higher-order, so the analysis can infer demands on higher-order function arguments;
- It is reasonably efficient: optimised GHC compiles up to 4% faster.

Thanks!

