Modular, Higher-Order Cardinality Analysis in Theory and Practice

Ilya Sergey

Dimitrios Vytiniotis

Simon Peyton Jones

Microsoft Research

POPL 2014

A story of three program optimisations

```
f1, f2 :: [Int] -> Int
                                           Which function is
Better
                                             better to run?
        f1 xs = let ys = (map costly xs)
                  in squash (\n. sum (map (+ n) ys))
                            if invoked more than once by squash
         f2 xs = squash (\n. sum (map (+ n) (map costly xs))
                          if invoked at most once by squash
Better
```

How many times a function is called?

(call cardinality)

"worker-wrapper" split

```
f x = case x of (p,q) \rightarrow <cbody>
```

"worker-wrapper" split

"wrapper", usually inlined on-site

```
f x = case x of (p,q) -> fw p q
fw p q = <cbody>
"worker"
```

"worker-wrapper" split

```
What if q is <u>never</u> used in <cbody>?
```

```
f x = case x of (p,q) \rightarrow fw p
fw p = \langle cbody \rangle
```

Don't have to pass q to fw!

Which parts of a data structure are certainly <u>not</u> used?

(absence)

smart memoization

```
f :: Int -> Int -> Int
f x c = if x > 0 then c + 1 else
    if x == 0 then 0 else c - 1

g y = f y (costly y)
```

Will be used exactly once: no need to memoize!

Which parts of a data structure are used <u>no more than once</u>?

(thunk cardinality)

Cardinality Analysis

- · Call cardinality
- Absence
- Thunk cardinality

Usage demands

(how a value is used)

call demand

Usage demands

$$d ::= C^n(d) \mid U(d_1^{\dagger}, d_2^{\dagger}) \mid U$$

Cardinality demands

$$d^{\dagger} ::= A \mid n*d$$

Usage cardinalities

$$n ::= 1 \mid \omega$$

tuple demand

Usage demands

$$C^n(d)$$

$$d ::= C^n(d) | U(d_1^{\dagger}, d_2^{\dagger}) | U$$

Cardinality demands

$$d^{\dagger}$$

$$d^{\dagger} ::= A \mid n*d$$

Usage cardinalities

 $n ::= 1 \mid \omega$

general demand

Usage demands

$$C^n(d)$$

$$d ::= C^n(d) \mid U(d_1^{\dagger}, d_2^{\dagger}) \mid U$$

Cardinality demands

$$d^{\dagger}$$

$$::=$$

$$d^{\dagger} ::= A \mid n*d$$

Usage cardinalities

 $n ::= 1 \mid \omega$

Usage demands

$$d ::= C^n(d) \mid U(d_1^{\dagger}, d_2^{\dagger}) \mid U$$

absent value

Cardinality demands

$$d^{\dagger} \quad ::= \quad \boxed{A} \mid n * d$$

Usage cardinalities

$$n ::= 1 \mid \omega$$

Usage demands

$$d ::= C^n(d) \mid U(d_1^{\dagger}, d_2^{\dagger}) \mid U$$

used at most *n* times

Cardinality demands

$$d^{\dagger}$$
 ::= $A \mid n*d$

Usage cardinalities

$$n ::= 1 \mid \omega$$

Usage Types

(how a function uses its arguments)

 $\mathtt{wurble1} \ :: \ \left[\omega \! * \! U\right] \! \to C^{\omega}(C^1(U)) \to \bullet$

wurble1 a g = g 2(a)+ g 3(a)

 $\mathtt{wurble1} \ :: \ \omega {*U} \to [C^\omega(C^1(U))] \to \bullet$

wurble1 a g = g 2 a + g 3 a

 $\mathtt{wurble2} \ :: \ \left[\omega {*}U\right] \!\!\!\to C^1(C^\omega(U)) \to \bullet$

wurble2 a g = sum (map (g[a] [1..1000])

 $\mathtt{wurble2} \; :: \; \; \omega \! *\! U \to C^1(C^\omega(U)) \to \bullet$

wurble2 a g = sum (map (g)a) [1..1000])

 $\mathtt{f}::1*U(1*U,A)\rightarrow ullet$

f x = case x of (p, q) -> p + 1

Usage type depends on a usage context!

(result demand determines argument demands)

Backwards Analysis

Infers demand type basing on a context

$$P \mapsto e \downarrow d \Rightarrow \langle \tau ; \varphi \rangle$$

$$P \mapsto e \downarrow d \Rightarrow \langle \tau ; \varphi \rangle$$

- P signature environment, maps some of free variables of e to their demand signatures (i.e., keeps some contextual information)
- d usage demand, describes the degree to which e is evaluated
- τ demand type, usages that e places on its arguments
- ϕ fv-usage, usages that e places on its free variables

$$e=\lambda x$$
 . case x of $(p,q) \to (p,f$ True)

$$\epsilon \mapsto e \downarrow C^{1}(U) \Rightarrow \langle 1*U(\omega*U,A) \rightarrow \bullet; \{f \mapsto 1*C^{1}(U)\} \rangle$$

Each function is a backwards demand transformer it transforms a context demand to argument demands and fv-demands.

We cannot compute best argument demands for all contexts: need to approximate.

Demand Lattice

Each function is a monotone backwards demand transformer.

Exploiting demand monotonicity

Analysis-based annotations

$$P \mapsto e \downarrow d \Rightarrow \langle \tau ; \varphi \rangle$$

Elaboration

$$P \mapsto e \downarrow d \Rightarrow \langle \tau ; \varphi \rangle \rightsquigarrow e$$

- let-bindings in e are annotated with $m \in \{0, 1, \omega\}$ to indicate how often the let binding is evaluated;
- Each Lambda $\lambda^n x$.e₁ in e carries an annotation $n \in \{1, \omega\}$ to indicate how often the lambda is called.

 $\bullet \vdash \bullet \text{ let } f = \lambda x. \lambda y. \ x \text{ True in } f \ p \ q \quad \downarrow C^1(U)$ $\Rightarrow \langle \bullet; \{p \mapsto 1 * C^1(U), q \mapsto A\} \rangle$ $\bullet \diamond \diamond \bullet$

let $f \stackrel{1}{=} \lambda^1 x. \lambda^1 y. \ x$ True in f p q

Soundness

Restricted operational semantics

(makes sure that the annotations are respected)

Annotating cardinality analysis

produces well-typed programs

annotated programs do not get stuck

Type and effect system

progress and preservation

Restricted

operational
semantics

Cardinality-enabled optimisations

I. Let-in floating optimisation

let $z\stackrel{m_1}{=} \mathsf{e}_1$ in $(\mathsf{let}\,f\stackrel{m_2}{=}\lambda^1x$. e in $\mathsf{e}_2)$

$$(\det z \stackrel{m_1}{=} \mathtt{e}_1)$$
 in $(\det f \stackrel{m_2}{=} \lambda^{1}\!\! x$. \mathtt{e} in $\mathtt{e}_2)$

$$\Longrightarrow$$
 let $f \stackrel{m_2}{=} \lambda^1 x$. (let $z \stackrel{m_1}{=} e_1$ in e_1) in e_2 ,

for any m_1 , m_2 and $z \notin FV(e_2)$.

Improvement Theorem 1

Let-in floating

does not increase the number of execution steps.

2. Smart execution

e₁

Optimised CBN Machine

Sestoft:JFP97

$$\langle \mathsf{H}_1, \mathsf{e}_1, \mathsf{S}_1 \rangle \Longrightarrow \ldots \Longrightarrow \langle \mathsf{H}_n, \mathsf{e}_n, \mathsf{S}_n \rangle$$

- 1-annotated bindings are <u>not</u> memoised;
- θ -annotated bindings are <u>skipped</u>.

Improvement Theorem 2

Optimising semantics works <u>faster</u> on elaborated expressions and produces coherent results.

Implementation and Evaluation

- The analysis and optimisations are implemented in Glasgow Haskell Compiler (GHC v7.8 and newer): http://github.com/ghc/ghc
- Added 250 LOC to 140 KLOC compiler;
- · Runs simultaneously with the strictness analyser;
- Evaluated on
 - nofib benchmark suite,
 - various hackage libraries,
 - the Benchmark Game programs,
 - GHC itself.

Results on nofib

Program	Synt. λ^1	Synt. Thnk ¹	RT Thnk ¹
anna	4.0%	7.2%	2.9%
bspt	5.0%	15.4%	1.5%
cacheprof	7.6%	11.9%	5.1%
calendar	5.7%	0.0%	0.2%
constraints	2.0%	3.2%	4.5%
and 72 more pro			
Arithmetic mean	10.3%	12.6%	5.5%

^{*} as linked and run with libraries

Results on nofib

Program	Allocs		Runtime						
Tiogram	No hack	(Hack)	No hack	Hack					
anna	-2.1%	-0.2%	+0.1%	-0.0%					
bspt	-2.2%	-0.0%	-0.0%	+0.0%					
cacheprof	-7.9%	-0.6%	-6.1%	-5.0%					
calendar	-9.2%	+0.2%	-0.0%	-0.0%					
constraints	-0.9%	-0.0%	-1.2%	-0.2%					
and 72 more programs									
Min	-95.5%	-10.9%	-28.2%	-12.1%					
Max	+3.5%	+0.5%	+1.8%	+2.8%					
Geometric mean	-6.0%	-0.3%	-2.2%	-1.4%					

The hack (due to A. Gill): hardcode argument cardinalities for build, foldr and runsT.

Compiling with optimised GHC

- · We compiled GHC itself with cardinality optimisations;
- · Then we measured improvement in compilation runtimes.

Program	LOC	GHC Alloc Δ		GHC RT Δ	
		No hack	Hack	No hack	Hack
anna	5740	-1.6%	-1.5%	-0.8%	-0.4%
cacheprof	1600	-1.7%	-0.4%	-2.3%	-1.8%
fluid	1579	-1.9%	-1.9%	-2.8%	-1.6%
gamteb	1933	-0.5%	-0.1%	-0.5%	-0.1%
parser	2379	-0.7%	-0.2%	-2.6%	-0.6%
veritas	4674	-1.4%	-0.3%	-4.5%	-4.1%

To take away

- Cardinality analysis is simple to design and understand: it's all about usage demands and demand transformers;
- It is cheap to implement: we added only 250 LOC to GHC;
- It is conservative, which makes it fast and modular;
- Call demands make it higher-order, so the analysis can infer demands on higher-order function arguments;
- It is reasonably efficient: optimised GHC compiles up to 4% faster.

Thanks!