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Concurrent Separation Logic
O'Hearn [CONCUR'04], Brookes [CONCUR'04]

a.k.a Coarse-Grained Concurrency

Critical Regions with Ownership Transfer

4 A. Nanevski, R. Ley-Wild, I. Sergey, and G. A. Delbianco

2 An Overview of Fine-Grained Resources

There are three different aspects along which fine-grained resources can be composed:
space (i.e., states), ownership, and time (i.e., transitions). In this section, we describe
how to represent these aspects in the assertion logic of FCSL.

Space The heap belonging to a fine-grained resource,4 is explicitly identified by a
resource label. We use assertions in the “points-to” style of separation logic, to name
resources and identify their respective heaps. For example, the assertion

`1
j7! h1 ⇤ `2

j7! h2

describes a state in which the heaps h1 and h2 are associated with the resources labeled
`1 and `2, respectively. The connective ⇤ ensures that `1 and `2 are distinct labels, and
that h1 and h2 are disjoint heaps. The superscript j indicates that the heaps are joint
(shared), i.e., can be accessed by any thread, even though they are owned by the re-
sources `1 and `2, respectively.

The heaps h1 and h2 are not described by means of points-to assertions, but are built
using operators for singleton heaps x � v and disjoint union ·[. For example, the heap of
the resource lock, which explicitly encodes a coarse-grained resource with the resource
invariant I [12] may be described by the assertion

lock
j7! ((lk � b) ·[ h) ^ if b then h = empty else I h. (1)

The assertion exposes the fact that the heap owned by lock contains a boolean pointer lk
encoding a lock that protects the heap h. The conditional conjunct is a pure (i.e., label-
free) assertion, which describes an aspect of the ownership transfer protocol of CSL.
When the lock is not taken (i.e. b = false), the heap h satisfies the resource invariant.
When the lock is taken, the heap is transfered to the private ownership of the locking
thread, so h equals the empty heap, but lk remains in the ownership of lock.

Ownership Data in FCSL may be owned by a resource, as illustrated above, or by
individual threads. The thread-owned data, however, is also associated with a resource,
which it refines with thread-relative information. For example, the resource lock owns a
pointer lk which operationally implements a lock. However, just knowing that the lock
is taken or not is not enough for reasoning purposes; we need to know which thread
has taken it, if any. Thus, we associate with each thread an extra bit of lock-related
information, Own or⇠⇠⇠Own, which will identify the lock-owning thread as follows.

Following the idea of subjectivity [10], FCSL assertions are interpreted in a thread-
relative way. We use self to name the interpreting thread, and other to name the combi-
nation of all other threads running concurrently with self (i.e., the environment of self ).
We use two different assertions to describe thread-relative views: `

s7! v and `
o7! v. The

first is true in the self thread, if self ’s view of the resource ` is v. The second is true in
4 Or just resource for short. Later on, we explicitly identify CSL resources as coarse-grained.
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• Ownership Transfer is a way to think of  “somewhat overlapping” resources; 

• Ownership Transfer — Communication between resources.  
[This work]
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Resources with Arbitrary Transitions

Need to decide what each thread is allowed to do!

a.k.a Fine-Grained Concurrency
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Subjective Specifications for Arbitrary Transitions
Rely-Guarantee Reasoning, Jones [TOPLAS83]
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interaction between threads is directly specified by the rule for parallel composition.3

R _G2,G1 ` {p} c1 {q1} R _G1,G2 ` {p} c2 {q2}
R,G1 _G2 ` {p} c1 k c2 {q1 ^ q2}

PARRG

The rely transition R and guarantee transitions G1 and G2 are relations on states. A
rely specifies the thread’s expectations of state transitions made by its environment.
A guarantee specifies the state transitions made by the thread itself. The disjunctive
combinations of R and G’s in the rule captures the idea we call forking shuffle, whereby
upon forking, the thread c1 becomes part of the environment for c2 and vice-versa.

RG is more general than CSL because transitions can encode arbitrary protocols
on shared state, whereas CSL is specialized to a fixed mutual exclusion protocol on
critical sections. But, CSL is more compositional in manipulating resources. Where a
CSL resource invariant specifies the behavior of an individual chunk of shared state,
the transitions in RG treat the whole state as shared. The related work on Local Rely-
Guarantee [?] has made the first steps in improving RG in this respect.

Instead of improving on RG, in this paper we propose that attaining the best of
both reasoning styles can be achieved by generalizing CSL with a novel notion of fine-
grained resource. A fine-grained resource is specified by a resource invariant, as in CSL,
but it also adds transitions between states. Thus, it is best viewed as a state transition
system (STS), where the resource invariant essentially specifies the state space. We
identify a number of properties that an STS has to satisfy to specify a fine-grained
resource, and refer to such STSs as concurroids. We refer to our generalization as Fine-
grained CSL (FCSL).

There are two main ideas that we build on in FCSL: subjectivity [?] and commu-
nication. Subjectivity means that each state of a concurroid STS describes not only
the shared resource, but also two abstractions of it that represent the views of the state
by the transitioning thread, and by its environment, respectively. In such a setting, we
will be able to encode the idea of the forking shuffle at the level of state, rather than
by disjoining transitions. Hence, the FCSL rule for parallel composition will be in the
compositional style of PARCSL, with a somewhat generalized notion of ⇤ [?], rather
than in the monolithic style of PARRG.

Concurroids are communicating STSs; in addition to internal transitions between
states, they contain external transitions, which may be though of as “wires” dangling
towards the outside. Concurroids can be entangled, i.e., composed by means of in-
terconnecting their dangling wires, where the interconnections serve to transfer heap
ownership between concurroids. Entangling concurroids generalizes adding a resource
to the context � in RESOURCECSL. FCSL provides a specific inference rule INJECT
which generalizes the corresponding notion of context weakening, and allows that ver-
ifications carried out wrt. a concurroid U can be lifted to an entanglement U oV . FCSL
also provides an inference rule HIDE for creating a resource out of private state in a
scoped manner, thus generalizing RESOURCECSL.

We illustrate FCSL by a few examples showing how to implement the coarse-
grained resource management of CSL by fine-grained resources of FCSL. The re-
sources are fine-grained because they expose a lock on which threads can explicitly

3 In the presence of heaps, the rule is more complicated [?,?], but we elide the issue here.
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the transitions in RG treat the whole state as shared. The related work on Local Rely-
Guarantee [?] has made the first steps in improving RG in this respect.

Instead of improving on RG, in this paper we propose that attaining the best of
both reasoning styles can be achieved by generalizing CSL with a novel notion of fine-
grained resource. A fine-grained resource is specified by a resource invariant, as in CSL,
but it also adds transitions between states. Thus, it is best viewed as a state transition
system (STS), where the resource invariant essentially specifies the state space. We
identify a number of properties that an STS has to satisfy to specify a fine-grained
resource, and refer to such STSs as concurroids. We refer to our generalization as Fine-
grained CSL (FCSL).

There are two main ideas that we build on in FCSL: subjectivity [?] and commu-
nication. Subjectivity means that each state of a concurroid STS describes not only
the shared resource, but also two abstractions of it that represent the views of the state
by the transitioning thread, and by its environment, respectively. In such a setting, we
will be able to encode the idea of the forking shuffle at the level of state, rather than
by disjoining transitions. Hence, the FCSL rule for parallel composition will be in the
compositional style of PARCSL, with a somewhat generalized notion of ⇤ [?], rather
than in the monolithic style of PARRG.

Concurroids are communicating STSs; in addition to internal transitions between
states, they contain external transitions, which may be though of as “wires” dangling
towards the outside. Concurroids can be entangled, i.e., composed by means of in-
terconnecting their dangling wires, where the interconnections serve to transfer heap
ownership between concurroids. Entangling concurroids generalizes adding a resource
to the context � in RESOURCECSL. FCSL provides a specific inference rule INJECT
which generalizes the corresponding notion of context weakening, and allows that ver-
ifications carried out wrt. a concurroid U can be lifted to an entanglement U oV . FCSL
also provides an inference rule HIDE for creating a resource out of private state in a
scoped manner, thus generalizing RESOURCECSL.

We illustrate FCSL by a few examples showing how to implement the coarse-
grained resource management of CSL by fine-grained resources of FCSL. The re-
sources are fine-grained because they expose a lock on which threads can explicitly

3 In the presence of heaps, the rule is more complicated [?,?], but we elide the issue here.
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interaction between threads is directly specified by the rule for parallel composition.3

R _G2,G1 ` {p} c1 {q1} R _G1,G2 ` {p} c2 {q2}
R,G1 _G2 ` {p} c1 k c2 {q1 ^ q2}

PARRG
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will be able to encode the idea of the forking shuffle at the level of state, rather than
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compositional style of PARCSL, with a somewhat generalized notion of ⇤ [?], rather
than in the monolithic style of PARRG.

Concurroids are communicating STSs; in addition to internal transitions between
states, they contain external transitions, which may be though of as “wires” dangling
towards the outside. Concurroids can be entangled, i.e., composed by means of in-
terconnecting their dangling wires, where the interconnections serve to transfer heap
ownership between concurroids. Entangling concurroids generalizes adding a resource
to the context � in RESOURCECSL. FCSL provides a specific inference rule INJECT
which generalizes the corresponding notion of context weakening, and allows that ver-
ifications carried out wrt. a concurroid U can be lifted to an entanglement U oV . FCSL
also provides an inference rule HIDE for creating a resource out of private state in a
scoped manner, thus generalizing RESOURCECSL.

We illustrate FCSL by a few examples showing how to implement the coarse-
grained resource management of CSL by fine-grained resources of FCSL. The re-
sources are fine-grained because they expose a lock on which threads can explicitly

3 In the presence of heaps, the rule is more complicated [?,?], but we elide the issue here.
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“Forking shuffle”



Reasoning about State



Auxiliary State
Hansen [CompSurv’73], Lauer[PhD’73], Owicki-Gries[CACM’76]



Auxiliary State

Real state (heap)

Hansen [CompSurv’73], Lauer[PhD’73], Owicki-Gries[CACM’76]



Auxiliary State

Ghost (auxiliary) stateReal state (heap)

Hansen [CompSurv’73], Lauer[PhD’73], Owicki-Gries[CACM’76]
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Subjective Auxiliary State
Subjective Concurrent Separation Logic, 

LeyWild-Nanevski [POPL’13]
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State that belongs  
to the others



Subjective Auxiliary State
Subjective Concurrent Separation Logic, 

LeyWild-Nanevski [POPL’13]

State that belongs to self

State that belongs  
to the others

Self and Other states are elements of a Partial Commutative Monoid (PCM): (S, 0, ⊕).



myself

Auxiliary State Split



myself

self(1) self(2)||

Auxiliary State Split



myselfmyself

Ghost state that belongs to self(1)

self(1) self(2)||



myself

self(1) ||
myself

Ghost state that belongs to self(1)

self(1) self(2)||



myselfmyself

Ghost state that belongs to self(2)

self(1) self(2)||



myselfmyself

self(1) ||
Ghost state that belongs to self(2)

self(1) self(2)||



Subjective State for  
Fine-Grained Concurrency

[This work]



Subjective State for  
Fine-Grained Concurrency

[This work]



Auxiliary State Split determines 
Allowed Transitions

[This work]



Auxiliary State Split determines 
Allowed Transitions

Transitions allowed to the others 
(Rely)

Transitions allowed to myself  
(Guarantee)

[This work]



Subjective specifications



Prove for self,  
abstract over the others

Subjective specifications



Self

Others



Two dimensions of scalability

Number of  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Structure and  
number of  

threads

Communication
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Two dimensions of scalability

Number of  
resources

Structure and  
number of  

threads

Communication

Self/Other view  
on ghost resources
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Communicating	

Subjective 

State-Transition Systems

The Model



Concurroids



Concurroid States



| {z }
Self

Concurroid States



| {z }| {z }
Self Other

Concurroid States



| {z } | {z }| {z }
Self OtherShared

Concurroid States



| {z } | {z }| {z }
Self OtherShared

• Self       - (possibly ghost) state controlled by me;	


• Other    - (possibly ghost) state controlled by all others;	


• Shared  -  state that belongs to the resource;	


• Self and Other states are elements of a PCM.

Concurroid States



Building a concurroid 
for Ticketed Lock



n1



n2
n1



n2
n1

n1  n < n2



n2
n1

n1  n < n2
owner



n2
n1

n1  n < n2
owner

next



lock = {!
  x := DRAW();!
  while (!TRY(x)) SKIP;!
}

unlock = {!
  INCR_OWN();!
}

DRAW()     = { return FETCH_AND_INCREMENT(next); }!
TRY(n)     = { return (n == owner); }!
INCR_OWN() = { owner := owner + 1; }

Reference Implementation



Ticketed Lock States

(as, ts) (a
o

, t
o

)

owner 7! n1

next 7! n2

⇤
⇤` ⇣ h

hbi



Ticketed Lock States
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Ticketed Lock States

• as, ao  - parameter ghost state controlled by self/other;

• ts, to - tickets, owned by self/other; 
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Ticketed Lock States

• as, ao  - parameter ghost state controlled by self/other;

• ts, to - tickets, owned by self/other; 

• h - a heap protected by the lock, subject of ownership transfer;
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next 7! n2

⇤
⇤` ⇣ h

hbi



Ticketed Lock States

• as, ao  - parameter ghost state controlled by self/other;

• ts, to - tickets, owned by self/other; 

• h - a heap protected by the lock, subject of ownership transfer;

• b - administrative flag to indicate locking;

(as, ts) (a
o

, t
o

)

owner 7! n1

next 7! n2

⇤
⇤` ⇣ h

hbi



Ticketed Lock States

• as, ao  - parameter ghost state controlled by self/other;

• ts, to - tickets, owned by self/other; 

• h - a heap protected by the lock, subject of ownership transfer;

• b - administrative flag to indicate locking;

• l  - label to identify this particular instance of TLock concurroid.

(as, ts) (a
o

, t
o

)

owner 7! n1

next 7! n2

⇤
⇤` ⇣ h

hbi



Ticketed Lock Invariant



Ticketed Lock Invariant
s = ^(as, ts) (a

o

, t
o

)

owner 7! n1

next 7! n2

⇤
⇤` ⇣ h

hbi



Ticketed Lock Invariant

t
s

� t
o

= {n | n1  n < n2} ^

s = ^(as, ts) (a
o

, t
o

)

owner 7! n1

next 7! n2

⇤
⇤` ⇣ h

hbi
All dispensed tickets



Ticketed Lock Invariant

t
s

� t
o

= {n | n1  n < n2} ^

_
0

BB@

1

CCA

Locked

s = ^

(n1 2 (t
s

� t
o

) ^ b = true ^ h = emp)

(as, ts) (a
o

, t
o

)

owner 7! n1

next 7! n2

⇤
⇤` ⇣ h

hbi
All dispensed tickets



Ticketed Lock Invariant

t
s

� t
o

= {n | n1  n < n2} ^

_

if n1 < n2 then n1 2 (t
s

� t
o

) ^ b = false ^ I(a
s

� a
o

)h

else n1 = n2 ^ b = false ^ I(a
s

� a
o

)h

0

BB@

1

CCA

Locked

Unlocked

s = ^

(n1 2 (t
s

� t
o

) ^ b = true ^ h = emp)

(as, ts) (a
o

, t
o

)

owner 7! n1

next 7! n2

⇤
⇤` ⇣ h

hbi
All dispensed tickets



Ticketed Lock Invariant

t
s

� t
o

= {n | n1  n < n2} ^

_

if n1 < n2 then n1 2 (t
s

� t
o

) ^ b = false ^ I(a
s

� a
o

)h

else n1 = n2 ^ b = false ^ I(a
s

� a
o

)h

0

BB@

1

CCA

Locked

Unlocked

About to be served

s = ^

(n1 2 (t
s

� t
o

) ^ b = true ^ h = emp)

(as, ts) (a
o

, t
o

)

owner 7! n1

next 7! n2

⇤
⇤` ⇣ h

hbi
All dispensed tickets



Transitions



Internal Transitions
Intuition: 	

drawing a ticket from the dispenser



(a
o

, t
o

)` ⇣
hbi

owner 7! n1

h

⇤
⇤next 7! n2 + 1

(as, ts [ {n2})

(as, ts) (a
o

, t
o

)

owner 7! n1

next 7! n2

⇤
⇤` ⇣ h

hbi

+



(a
o

, t
o

)` ⇣
hbi

owner 7! n1

h

⇤
⇤next 7! n2 + 1

(as, ts [ {n2})

(as, ts) (a
o

, t
o

)

owner 7! n1

next 7! n2

⇤
⇤` ⇣ h

hbi

+ I pick a ticket
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hbi

owner 7! n1

h

⇤
⇤next 7! n2 + 1

(as, ts [ {n2})

(as, ts) (a
o

, t
o

)

owner 7! n1

next 7! n2

⇤
⇤` ⇣ h

hbi

+I record it in my self



Communication



Communication

Acquire/Release transitions	

(communication is via heap ownership transfer)



Release Transitions

Intuition: 	

the lock gives up ownership over the heap



(a
o

, t
o

)

owner 7! n1

next 7! n2

⇤
⇤` ⇣ emp

htruei

(as, ts [ {n1})

(a
o

, t
o

)

owner 7! n1

next 7! n2

⇤
⇤` ⇣ h

(as, ts [ {n1})
hfalsei

+
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⇤
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+I move the heap somewhere
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owner 7! n1

next 7! n2

⇤
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owner 7! n1

next 7! n2

⇤
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(as, ts [ {n1})
hfalsei

+ … if I’m the owner of n1



Acquire Transitions

Intuition: 	

the lock obtains back ownership over the heap	

and increments the service counter (owner)



(a
o

, t
o

)

owner 7! n1

next 7! n2

⇤
⇤` ⇣ emp

htruei

(as, ts [ {n1})

(a
o

, t
o

)
⇤
⇤` ⇣ h

hfalsei

next 7! n2(as, ts)

owner 7! n1 + 1

+
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owner 7! n1

next 7! n2

⇤
⇤` ⇣ emp

htruei

(as, ts [ {n1})

(a
o

, t
o

)
⇤
⇤` ⇣ h

hfalsei

next 7! n2(as, ts)

owner 7! n1 + 1

+ I move the heap back
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owner 7! n1

next 7! n2

⇤
⇤` ⇣ emp

htruei

(as, ts [ {n1})

(a
o

, t
o

)
⇤
⇤` ⇣ h

hfalsei

next 7! n2(as, ts)

owner 7! n1 + 1

+I drop my ticket
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owner 7! n1

next 7! n2

⇤
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htruei

(as, ts [ {n1})

(a
o

, t
o

)
⇤
⇤` ⇣ h

hfalsei

next 7! n2(as, ts)

owner 7! n1 + 1

+I call the next



Transitions never change the other part!



Transitions never change the other part!

Transitions = Guarantee



Transposing the Concurroid

(as, ts) (a
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owner 7! n1

next 7! n2

⇤
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Transposing the Concurroid
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Transposing the Concurroid

(as, ts)(a
o

, t
o

)
owner 7! n1

next 7! n2

⇤
⇤` ⇣ h

hbi

Transitions of transposed = Rely



Composing Concurroids



Intuition: 	

Connect communication channels with right polarity



` ⇣p ⇣

Intuition: 	

Connect communication channels with right polarity



` ⇣p ⇣

Intuition: 	

Connect communication channels with right polarity

acq

acq

acq
acq rel

rel

rel

rel

• Some channels might be left loose	


• Some channels might be shut down	


• Same channels might be connected several times



Entanglement Operators
⋈, ⋊, ⋉,×...

Connect two concurroids by connecting 
some of their acquire/release transitions.



Entanglement Operators
⋈, ⋊, ⋉,×...

Connect two concurroids by connecting 
some of their acquire/release transitions.

Connected A/R transitions become 
internal for thе entanglement.



Programming 
with 

Concurroids



Transitions are not yet 
commands!



Transitions are not yet 
commands!

They are just specifications of	

some correct behavior of a resource.



Concurroid-Aware Actions
• Decorate machine commands  

with concurroid’s internal transitions;	


• Specify the result;	


• Operational meaning:  
READ, WRITE, SKIP and various RMW-commands;	


• All other command connectives are standard.



Recap:  TLock Implementation
lock = {!
  x := DRAW();!
  while (!TRY(x)) SKIP;!
}

unlock = {!
  INCR_OWN();!
}



Recap:  TLock Implementation
lock = {!
  x := DRAW();!
  while (!TRY(x)) SKIP;!
}

unlock = {!
  INCR_OWN();!
}

Atomic actions instrumented with the transition logic



Scaling along the  
two dimensions:  

Proof Rules



– A list of inference rules should be in the abstract. Probably just discuss the always
predicate a bit, if at all. The point is just to have a theorem somewhere.

—-
In the terminology of Rely-Guarantee logics [?], transitions are guarantee relations.

When we need to express the steps of the other thread, and thus obtain a rely relation,
we simply transpose the self and other components of the states. Thus, concurroids may
be seen as a formalism for building up rely and guarantee relations in a structured way.

Concurroids are composed by entanglement. An entanglement of two concurroids
U and V interconnects (all or some of) the dually polarized transitions of U and V , while
adjoining their individual state spaces, to obtain a new concurroid in which the exchange
of heap ownership between U and V is internal. Obviously, there may be many different
ways to entangle concurroids, depending on which transitions of U and V are chosen
for interconnection, and which ones are left “dangling” for interconnection by future
entanglements. The sets of interconnected and dangling transitions may overlap as we
may interconnect some transitions, but also leave their copies dangling.

Some interconnection patterns are more common than others, so we introduce spe-
cial notation for them. We denote by U o V the concurroid which interconnects each
transition of U with each of V , leaving the transitions of U dangling, but shutting those
of V . Symmetrically for U n V . We denote by U ] V the concurroid in which no
transitions are interconnected, and all are left dangling.

Reasoning principles There are three rules in SCTS that allow for compositional rea-
soning along the various combinations of space, agency and time axes.

We first present the rule for parallel composition of threads; thus, it covers compo-
sitionality along the agency axis.

{p1}C1 {q1}@ U {p2}C2 {q2}@ U

{p1 ~ p2}C1 k C2 {q1 ~ q2}@ U
PAR

The 4-tuple {p}C {q}@ U is a Hoare-style specification expressing that the program C
has a precondition p, postcondition q, under transitions allowed by the concurroid U.

The rule uses subjective separating conjunction ~ [?] to split the state of C1 k C2
into two. In contrast to separation logic, the split doesn’t divide the state by labels into
label-disjoint halves. The subdivisions contain the same labels, but the contents of the
self and other portions differs. For example, as an illustration, ~ satisfies the following
equivalences over heaps and lock ownerships.

(priv
s7! hS ·[ hO ^ priv

o7! h) () (priv
s7! hS ^ priv

o7! hO ·[ h) ~ (priv
s7! hO ^ priv

o7! hS ·[ h)
(lock

s7! mS •mO ^ lock
o7! m) () (lock

s7! mS ^ lock
o7! mO • m) ~ (lock

s7! mO ^ lock
o7! mS • m)

The parallel composition starts with a self component priv
s7! hS ·[ hO in case of heaps

(lock
s7! (mS • mO) in case of locks). When the parent thread forks two child threads,

the parent’s self component splits between the children, while the children’s other
component are implicitly induced to preserve coherence. Thus, left childs self view
if priv

s7! hS (lock
s7! mS for locks), and other view is priv

o7! hO ·[ h (lock
o7! mO • m

13

Scaling along X:  
Parallel Composition

where      accounts for adapting self/other view

16 A. Nanevski, R. Ley-Wild, I. Sergey, and G. A. Delbianco

Fig. 2 FCSL inference rules.

� ` {p} c1 : B {q}@U �, x : B ` {[x/res]q} c2 : A {r}@U x < FV(r)
� ` {p} x c1; c2 : A {r}@U

SEQ

� ` {p1} c1 : A1 {q1}@U � ` {p2} c2 : A2 {q2}@U
� ` {p1 ~ p2} c1 k c2 : A1 ⇥ A2 {[⇡1 res/res]q1 ~ [⇡2 res/res]q2}@U

PAR
8x:B. {p} f (x) : A {q}@U 2 �
� ` 8x:B. {p} f (x) : A {q}@U

HYP

� ` {p1} c : A {q1}@U � ` (p1, q1) v (p2, q2)
� ` {p2} c : A {q2}@U

CONSEQ
� ` {p} c : A {q}@U r stable under U

� ` {p ~ r} c : A {q ~ r}@U
FRAME

� ` {e = true ^ p} c1 : A {q}@U � ` {e = false ^ p} c2 : A {q}@U
� ` {p} if e then c1 else c2 : A {q}@U

IF

� ` {p1} c : A {q1}@U � ` {p2} c : A {q2}@U
� ` {p1 ^ p2} c : A {q1 ^ q2}@U

CONJ
� ` {p} c : A {q}@U ↵ < dom �

� ` {9↵:B. p} c : A {9↵:B. q}@U
EXIST

� ` e : A p stable under U
� ` {p} return e : A {p ^ res = e}@U

RET
�,8x:B. {p} f (x) : A {q}@U, x:B ` {p} c : A {q}@U

� ` 8x:B. {p} (fix f . x. c)(x) : A {q}@U
FIX

� ` 8x:B. {p} F(x) : A {q}@U � ` e : B
� ` {[e/x]p} F(e) : A {[e/x]q}@U

APP
� ` {p} c : A {q}@U r stable under V
� ` {p ⇤ r} inject c : A {q ⇤ r}@U o V

INJECT

� `
⇢

priv
s7! h ⇤ p

�

c
⇢

priv
s7! h0 ⇤ q

�

@(P o U) o V P, U and V have disjoint sets of labels

� ` { g h ⇤ (� (g)��⇤ p)} hide�,g c
�9g0. g0 h0 ⇤ (� (g0)��⇤ q)

 

@P o U
HIDE

where  g h = 9k:heap. priv
s7! h ·[ k ^� (g) # k

a = (U, A,�, µ) is an action � ` (� ^ this w, �w0. (w,w0, res) 2 µ) v (p, q) p, q stable under U
� ` {p} act a : A {q}@U

ACTION

� does not bind logical variables. In first-order Hoare logics, logical variables are im-
plicitly universally quantified with global scope. In FCSL, we limit their scope to the
Hoare tuples in which they appear. This is required for specifying recursive procedures,
where a logical variable may be instantiated differently in each recursive call [9]. We
also assume a formation requirement on Hoare tuples FLV(p) ◆ FLV(q), i.e., that all
free logical variables of the postcondition also appear in the precondition.

The inference rules of the Hoare tuple judgments for commands and procedures
are presented in Figure 2. We note that the assertions and the annotations in the rules
(e.g., � in the HIDE rule) may freely use the variables in �. To reduce clutter, we
silently assume the checks that all such specification level-entities are well-typed in
their respective contexts �.

We have already discussed PAR, INJECT and HIDE rules in their versions where
the return type A = unit. The generalization to arbitrary A is straightforward. A side
condition of HIDE ensures that the sets of labels of P, U and V don’t clash, so the
entanglement (P o U) o V is defined. The rule FRAME is a special case of PAR when
c2 is taken to be the idle thread (i.e., c2 = return()). Just like in the rule RET, we
need to prove the framing assertion r stable, to account for the interference of the other
threads. The rule FIX requires proving a Hoare tuple for the procedure body, under a



– A list of inference rules should be in the abstract. Probably just discuss the always
predicate a bit, if at all. The point is just to have a theorem somewhere.

—-
In the terminology of Rely-Guarantee logics [?], transitions are guarantee relations.

When we need to express the steps of the other thread, and thus obtain a rely relation,
we simply transpose the self and other components of the states. Thus, concurroids may
be seen as a formalism for building up rely and guarantee relations in a structured way.

Concurroids are composed by entanglement. An entanglement of two concurroids
U and V interconnects (all or some of) the dually polarized transitions of U and V , while
adjoining their individual state spaces, to obtain a new concurroid in which the exchange
of heap ownership between U and V is internal. Obviously, there may be many different
ways to entangle concurroids, depending on which transitions of U and V are chosen
for interconnection, and which ones are left “dangling” for interconnection by future
entanglements. The sets of interconnected and dangling transitions may overlap as we
may interconnect some transitions, but also leave their copies dangling.

Some interconnection patterns are more common than others, so we introduce spe-
cial notation for them. We denote by U o V the concurroid which interconnects each
transition of U with each of V , leaving the transitions of U dangling, but shutting those
of V . Symmetrically for U n V . We denote by U ] V the concurroid in which no
transitions are interconnected, and all are left dangling.

Reasoning principles There are three rules in SCTS that allow for compositional rea-
soning along the various combinations of space, agency and time axes.

We first present the rule for parallel composition of threads; thus, it covers compo-
sitionality along the agency axis.

{p1}C1 {q1}@ U {p2}C2 {q2}@ U

{p1 ~ p2}C1 k C2 {q1 ~ q2}@ U
PAR

The 4-tuple {p}C {q}@ U is a Hoare-style specification expressing that the program C
has a precondition p, postcondition q, under transitions allowed by the concurroid U.

The rule uses subjective separating conjunction ~ [?] to split the state of C1 k C2
into two. In contrast to separation logic, the split doesn’t divide the state by labels into
label-disjoint halves. The subdivisions contain the same labels, but the contents of the
self and other portions differs. For example, as an illustration, ~ satisfies the following
equivalences over heaps and lock ownerships.

(priv
s7! hS ·[ hO ^ priv

o7! h) () (priv
s7! hS ^ priv

o7! hO ·[ h) ~ (priv
s7! hO ^ priv

o7! hS ·[ h)
(lock

s7! mS •mO ^ lock
o7! m) () (lock

s7! mS ^ lock
o7! mO • m) ~ (lock

s7! mO ^ lock
o7! mS • m)

The parallel composition starts with a self component priv
s7! hS ·[ hO in case of heaps

(lock
s7! (mS • mO) in case of locks). When the parent thread forks two child threads,

the parent’s self component splits between the children, while the children’s other
component are implicitly induced to preserve coherence. Thus, left childs self view
if priv

s7! hS (lock
s7! mS for locks), and other view is priv

o7! hO ·[ h (lock
o7! mO • m

13
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More resources

where      accounts for adapting self/other view
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Fig. 2 FCSL inference rules.

� ` {p} c1 : B {q}@U �, x : B ` {[x/res]q} c2 : A {r}@U x < FV(r)
� ` {p} x c1; c2 : A {r}@U

SEQ

� ` {p1} c1 : A1 {q1}@U � ` {p2} c2 : A2 {q2}@U
� ` {p1 ~ p2} c1 k c2 : A1 ⇥ A2 {[⇡1 res/res]q1 ~ [⇡2 res/res]q2}@U

PAR
8x:B. {p} f (x) : A {q}@U 2 �
� ` 8x:B. {p} f (x) : A {q}@U

HYP

� ` {p1} c : A {q1}@U � ` (p1, q1) v (p2, q2)
� ` {p2} c : A {q2}@U

CONSEQ
� ` {p} c : A {q}@U r stable under U

� ` {p ~ r} c : A {q ~ r}@U
FRAME

� ` {e = true ^ p} c1 : A {q}@U � ` {e = false ^ p} c2 : A {q}@U
� ` {p} if e then c1 else c2 : A {q}@U

IF

� ` {p1} c : A {q1}@U � ` {p2} c : A {q2}@U
� ` {p1 ^ p2} c : A {q1 ^ q2}@U

CONJ
� ` {p} c : A {q}@U ↵ < dom �

� ` {9↵:B. p} c : A {9↵:B. q}@U
EXIST

� ` e : A p stable under U
� ` {p} return e : A {p ^ res = e}@U

RET
�,8x:B. {p} f (x) : A {q}@U, x:B ` {p} c : A {q}@U

� ` 8x:B. {p} (fix f . x. c)(x) : A {q}@U
FIX

� ` 8x:B. {p} F(x) : A {q}@U � ` e : B
� ` {[e/x]p} F(e) : A {[e/x]q}@U

APP
� ` {p} c : A {q}@U r stable under V
� ` {p ⇤ r} inject c : A {q ⇤ r}@U o V

INJECT

� `
⇢

priv
s7! h ⇤ p

�

c
⇢

priv
s7! h0 ⇤ q

�

@(P o U) o V P, U and V have disjoint sets of labels

� ` { g h ⇤ (� (g)��⇤ p)} hide�,g c
�9g0. g0 h0 ⇤ (� (g0)��⇤ q)

 

@P o U
HIDE

where  g h = 9k:heap. priv
s7! h ·[ k ^� (g) # k

a = (U, A,�, µ) is an action � ` (� ^ this w, �w0. (w,w0, res) 2 µ) v (p, q) p, q stable under U
� ` {p} act a : A {q}@U

ACTION

� does not bind logical variables. In first-order Hoare logics, logical variables are im-
plicitly universally quantified with global scope. In FCSL, we limit their scope to the
Hoare tuples in which they appear. This is required for specifying recursive procedures,
where a logical variable may be instantiated differently in each recursive call [9]. We
also assume a formation requirement on Hoare tuples FLV(p) ◆ FLV(q), i.e., that all
free logical variables of the postcondition also appear in the precondition.

The inference rules of the Hoare tuple judgments for commands and procedures
are presented in Figure 2. We note that the assertions and the annotations in the rules
(e.g., � in the HIDE rule) may freely use the variables in �. To reduce clutter, we
silently assume the checks that all such specification level-entities are well-typed in
their respective contexts �.

We have already discussed PAR, INJECT and HIDE rules in their versions where
the return type A = unit. The generalization to arbitrary A is straightforward. A side
condition of HIDE ensures that the sets of labels of P, U and V don’t clash, so the
entanglement (P o U) o V is defined. The rule FRAME is a special case of PAR when
c2 is taken to be the idle thread (i.e., c2 = return()). Just like in the rule RET, we
need to prove the framing assertion r stable, to account for the interference of the other
threads. The rule FIX requires proving a Hoare tuple for the procedure body, under a



Scaling along Y: Injection

be different in the two threads, but the way to access it in assertions and proofs is the
same. This is in contrast to a proof with classical auxiliary state [?], where the threads
have to name their auxiliary variables differently, thus preventing the reuse of the same
verification of incr in parallel composition [?].

(AN: Should I include here a comment on relation of subjectivity to RG? I think that’s prob-
ably best left for related work.)X

Injection The PAR rule requires that the composed programs share the same concur-
roid U, which describes the totality of their resources. If the programs use different
concurroids, they first have to be brought into a common entanglement, via the rule
INJECT.

{p}C {q}@ U r stable under V

{p ⇤ r} injectV C {q ⇤ r}@ U o V
INJECT

If C is verified wrt. a small concurroid U, it can be injected (i.e. coerced) into a larger
concurroid U o V . Reading the rule bottom-up, it says that we can ignore V , as V’s
transitions can’t influence C’s state. C’s state may be influenced by communication
between V and U, but this is already accounted for in the non-internal transitions of U.
In programs, we use the explicit coercion injectV to describe the change of “type” from
U to U o V .

When verifying C against U, we should only use the part of the state containing
labels relevant for U. The connective ⇤ splits the assertions into two portions containing
disjoint labels. By convention, p and q describe labels related to U, as they appear in
the premise in a Hoare triple with the concurroid U. The side condition on the stability
of r, implies that r uses only the labels of V .

Stability of r means that r remains valid no matter which transitions the other thread
takes over the portion of the states descibed by the labels of V . We will define stabil-
ity formally in Section ??, but here illustrate by example how stability factors in the
implementation and verification of incr.

The atomic commands for reading and writing to a pointer x have specification
relative to the concurroid P for private state.

{priv
s7! x � v} read x {priv

s7! x � v ^ r = v}@P
{priv

s7! x � �} write x v {priv
s7! x � v}@P

The commands for acquiring and releasing lock have specifications relative to the con-
curroid CSLlock = P o Llock, because they exchange ownership of the protected pointer
x between P and Llock.

{priv
s7! empty ⇤ lock

s7! (⇠⇠⇠Own, aS)}
acquire

{9aO.priv
s7! x � aS + aO ⇤ (lock

s7! (Own, aS) ^ lock
o7! (�, aO))}@CSLlock

{priv
s7! x � �(aS) + aO ⇤ (lock

s7! (Own, aS) ^ lock
o7! (�, aO))}

release�
{priv

s7! empty ⇤ lock
s7! (⇠⇠⇠Own,�(aS))}@CSLlock

8



Scaling along Y: Injection

More threads
U

More resources

be different in the two threads, but the way to access it in assertions and proofs is the
same. This is in contrast to a proof with classical auxiliary state [?], where the threads
have to name their auxiliary variables differently, thus preventing the reuse of the same
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concurroid U o V . Reading the rule bottom-up, it says that we can ignore V , as V’s
transitions can’t influence C’s state. C’s state may be influenced by communication
between V and U, but this is already accounted for in the non-internal transitions of U.
In programs, we use the explicit coercion injectV to describe the change of “type” from
U to U o V .

When verifying C against U, we should only use the part of the state containing
labels relevant for U. The connective ⇤ splits the assertions into two portions containing
disjoint labels. By convention, p and q describe labels related to U, as they appear in
the premise in a Hoare triple with the concurroid U. The side condition on the stability
of r, implies that r uses only the labels of V .

Stability of r means that r remains valid no matter which transitions the other thread
takes over the portion of the states descibed by the labels of V . We will define stabil-
ity formally in Section ??, but here illustrate by example how stability factors in the
implementation and verification of incr.

The atomic commands for reading and writing to a pointer x have specification
relative to the concurroid P for private state.

{priv
s7! x � v} read x {priv

s7! x � v ^ r = v}@P
{priv

s7! x � �} write x v {priv
s7! x � v}@P

The commands for acquiring and releasing lock have specifications relative to the con-
curroid CSLlock = P o Llock, because they exchange ownership of the protected pointer
x between P and Llock.

{priv
s7! empty ⇤ lock

s7! (⇠⇠⇠Own, aS)}
acquire

{9aO.priv
s7! x � aS + aO ⇤ (lock

s7! (Own, aS) ^ lock
o7! (�, aO))}@CSLlock

{priv
s7! x � �(aS) + aO ⇤ (lock

s7! (Own, aS) ^ lock
o7! (�, aO))}

release�
{priv

s7! empty ⇤ lock
s7! (⇠⇠⇠Own,�(aS))}@CSLlock
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Not discussed in this talk
• Scoped creation/disposal of concurroids (see the paper) 	


• A concurroid for a spin-lock (see the paper)	


• A concurroid model for readers/writers (talk to me)	


• Abstract predicates (yes, we can do it, too) (see the TR)	


• Denotational semantics of trees-of-traces (see the TR)	


• Soundness of the logic (check the TR or the Coq code)



Implementation
• Implementation in Coq: metatheory, logic, proofs; 	


• Shallow embedding into the CIC (~15 KLOC);	


• Higher-orderness and abstraction for free;	


• Reasoning in HTT-style: Hoare specifications are types;	


• Some automation is done for splitting the state among 
concurroids;	


• Spin-lock and Ticketed lock are fully implemented.



To take away
• State Transition Systems are expressive  

behavioural specifications of shared resources;	


• Self/Other Dichotomy is omnipresent when reasoning 
about shared-memory concurrency (composing N threads); 

• Communication is a way to describe state ownership 
transfer between resources (composing N resources).
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• Communication is a way to describe state ownership 
transfer between resources (composing N resources).

Concurroids unify these concepts in one data structure.



To take away

Thanks!

• State Transition Systems are expressive  
behavioural specifications of shared resources;	


• Self/Other Dichotomy is omnipresent when reasoning 
about shared-memory concurrency (composing N threads); 

• Communication is a way to describe state ownership 
transfer between resources (composing N resources).

Concurroids unify these concepts in one data structure.
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How the subjective split is defined?

Communicating State Transition Systems for Fine-Grained Concurrent Resources 7

Fig. 1 Semantics of selected FCSL assertions.

w |= > iff always
w |= ` s7! v iff valid w, and w. s = ` � v

w |= ` j7! h iff valid w, and w. j = ` � h
w |= ` o7! v iff valid w, and w. o = ` � v
w |= p ^ q iff w |= p and w |= q
w |= p ⇤ q iff valid w, and w = w1 ·[ w2, and w1 |= p and w2 |= q
w |= p��⇤ q iff for every w1, valid w ·[ w1 and w1 |= p implies w ·[ w1 |= q
w |= p ~ q iff valid w, and w. s = s1 ·[ s2, and

[s1 | w. j | s2 � w. o] |= p and [s2 | w. j | s1 � w. o] |= q
w |= this w0 if w = w0

|= p # h iff for every valid w, w |= p implies bwc = h

3 Reasoning with Concurroids

Auxiliary definitions A PCM-map is a finite map from labels (isomorphic to nat) to
⌃
U:pcmU. It associates each label with a pair of a PCM U and a value v 2 U. A heap-

map is a finite map from labels to heaps. If m1,m2 are PCM-maps, then m1 � m2 is
defined as empty � empty = empty, and ((` �

U

v1) ·[ m01) � ((` �
U

v2) ·[ m02) = (` �
U

v1•v2) ·[(m01�m02), and undefined otherwise. By overloading the notation, we define state
w as a triple [s | j | o], where s, o are PCM-maps, and j is a heap-map. We abbreviate
[` � vs | ` � v j | ` � vo] with ` � [vs | v j | vo]. w is valid if w. s, w. j, w. o have the
same domain as PCM-maps, w. s � w. o is defined, and the heaps in w. s, w. j and w. o
are disjoint (if w. s and w. o contain heaps in their codomain). State flattening bwc is the
disjoint union of all such heaps. w1 ·[ w2 is the pairwise disjoint union of component
maps of w1 and w2. The semantics of the main FCSL assertions is provided in Figure 1.
The subjective assertions (e.g., w |= ` s7! v) constrain the value of one state component,
assuming others to be existentially quantified over.

FCSL specifications take the form of Hoare 4-tuple {p} c {q}@U expressing that the
thread c has a precondition p, postcondition q, in a state space and under transitions
defined by the concurroid U, which in FCSL takes the role of a resource context from
CSL. We next present the characteristic inference rules of FCSL.

Parallel composition The rule for parallel composition in FCSL is similar to PARCSL,
with � replaced by a concurroid U, which we will define formally in Section 4.

{p1} c1 {q1}@U {p2} c2 {q2}@U

{p1 ~ p2} c1 k c2 {q1 ~ q2}@U
PAR

The PAR rule uses subjective separating conjunction ~ (see [10] and Figure 1) to split
the state of c1 k c2 into two. The split states contain the same labels, and equal joint
portions, but the self and other portions are recombined to match the thread-relative
views of c1 and c2. When the parent thread forks the children c1 and c2, the PCM values
in the parent’s self components are split between the children (similarly ⇤ splits heaps in
CSL), while the children’s other component are implicitly induced to preserve overall
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defined by the concurroid U, which in FCSL takes the role of a resource context from
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Parallel composition The rule for parallel composition in FCSL is similar to PARCSL,
with � replaced by a concurroid U, which we will define formally in Section 4.
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The PAR rule uses subjective separating conjunction ~ (see [10] and Figure 1) to split
the state of c1 k c2 into two. The split states contain the same labels, and equal joint
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views of c1 and c2. When the parent thread forks the children c1 and c2, the PCM values
in the parent’s self components are split between the children (similarly ⇤ splits heaps in
CSL), while the children’s other component are implicitly induced to preserve overall

“Forking shuffle” for the self/other components.
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Why do you need  
the explicit other?

• Some programs are easier to specify and verify using the other:	


• E.g., in the lock module the other doesn’t change if the lock is locked by self.	


• Some programs are much easier to specify via the other:	


• Typically, optimistic, non-effectful programs (e.g., stack’s contains(x)). 	


• other makes the duality between Rely and Guarantee explicit	


• and, in fact, the form of other is already present in R/G (it’s just Rely)	


• It’s already in the model, so why not use it when it comes in handy?



Can’t I just infer the other from some 
global/self knowledge?



Can’t I just infer the other from some 
global/self knowledge?

You can try. :)	

 

But then you need to define your “global” 
to subtract the self from.	


!

With other you don’t need to subtract.
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Can’t we just use Tokens or  
Fractional Permissions instead of other?

Yes, you can.	

 

Since both tokens and FP are just instances of 
PCM, you can, probably, instantiate  

self/other with any of them.

But why bother? :)
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No, they are not.
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• In our case we don’t bother about the last two.
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• Ownership assumes a holistic “preservation law” —  
everything is created in advance and owned by someone;

• Consider a  Ticketed Lock example with ownership:	


• we need to account for all currently used tickets;	


• we need to account for all disposed tickets;	


• we need to account for all not yet dispensed tickets;	


• In our case we don’t bother about the last two.

No, they are not.

Self/other dichotomy delivers more local reasoning ⇒ 

proofs are simpler!
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Can you extract the verified program 
from your Coq implementation and run it?

Yes and no.



Can you extract the verified program 
from your Coq implementation and run it?

Yes and no.

• Imperative programs are composed and verified  
(i.e., type-checked) by means of Coq;	


• They cannot be run by means of Gallina’s operational semantics;	


• The reason for that is the necessity to reason about while-loops 
and potentially diverging programs;	


• Think of our programs as of monadic values, which are composed, 
but not run yet.



Isn’t other just about framing?



Isn’t other just about framing?
Yes, in some sense it is.	


But just along just one axis of scalability.

More threads 
working with a resource



Isn’t other just about framing?
Yes, in some sense it is.	


But just along just one axis of scalability.

Other complements self for a particular resource.

More threads 
working with a resource



Why do you have two 
framing rules?
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Fig. 2 FCSL inference rules.

� ` {p} c1 : B {q}@U �, x : B ` {[x/res]q} c2 : A {r}@U x < FV(r)
� ` {p} x c1; c2 : A {r}@U

SEQ

� ` {p1} c1 : A1 {q1}@U � ` {p2} c2 : A2 {q2}@U
� ` {p1 ~ p2} c1 k c2 : A1 ⇥ A2 {[⇡1 res/res]q1 ~ [⇡2 res/res]q2}@U

PAR
8x:B. {p} f (x) : A {q}@U 2 �
� ` 8x:B. {p} f (x) : A {q}@U

HYP

� ` {p1} c : A {q1}@U � ` (p1, q1) v (p2, q2)
� ` {p2} c : A {q2}@U

CONSEQ
� ` {p} c : A {q}@U r stable under U

� ` {p ~ r} c : A {q ~ r}@U
FRAME

� ` {e = true ^ p} c1 : A {q}@U � ` {e = false ^ p} c2 : A {q}@U
� ` {p} if e then c1 else c2 : A {q}@U

IF

� ` {p1} c : A {q1}@U � ` {p2} c : A {q2}@U
� ` {p1 ^ p2} c : A {q1 ^ q2}@U

CONJ
� ` {p} c : A {q}@U ↵ < dom �

� ` {9↵:B. p} c : A {9↵:B. q}@U
EXIST

� ` e : A p stable under U
� ` {p} return e : A {p ^ res = e}@U

RET
�,8x:B. {p} f (x) : A {q}@U, x:B ` {p} c : A {q}@U

� ` 8x:B. {p} (fix f . x. c)(x) : A {q}@U
FIX

� ` 8x:B. {p} F(x) : A {q}@U � ` e : B
� ` {[e/x]p} F(e) : A {[e/x]q}@U

APP
� ` {p} c : A {q}@U r stable under V
� ` {p ⇤ r} inject c : A {q ⇤ r}@U o V

INJECT

� `
⇢

priv
s7! h ⇤ p

�

c
⇢

priv
s7! h0 ⇤ q

�

@(P o U) o V P, U and V have disjoint sets of labels

� ` { g h ⇤ (� (g)��⇤ p)} hide�,g c
�9g0. g0 h0 ⇤ (� (g0)��⇤ q)

 

@P o U
HIDE

where  g h = 9k:heap. priv
s7! h ·[ k ^� (g) # k

a = (U, A,�, µ) is an action � ` (� ^ this w, �w0. (w,w0, res) 2 µ) v (p, q) p, q stable under U
� ` {p} act a : A {q}@U

ACTION

� does not bind logical variables. In first-order Hoare logics, logical variables are im-
plicitly universally quantified with global scope. In FCSL, we limit their scope to the
Hoare tuples in which they appear. This is required for specifying recursive procedures,
where a logical variable may be instantiated differently in each recursive call [9]. We
also assume a formation requirement on Hoare tuples FLV(p) ◆ FLV(q), i.e., that all
free logical variables of the postcondition also appear in the precondition.

The inference rules of the Hoare tuple judgments for commands and procedures
are presented in Figure 2. We note that the assertions and the annotations in the rules
(e.g., � in the HIDE rule) may freely use the variables in �. To reduce clutter, we
silently assume the checks that all such specification level-entities are well-typed in
their respective contexts �.

We have already discussed PAR, INJECT and HIDE rules in their versions where
the return type A = unit. The generalization to arbitrary A is straightforward. A side
condition of HIDE ensures that the sets of labels of P, U and V don’t clash, so the
entanglement (P o U) o V is defined. The rule FRAME is a special case of PAR when
c2 is taken to be the idle thread (i.e., c2 = return()). Just like in the rule RET, we
need to prove the framing assertion r stable, to account for the interference of the other
threads. The rule FIX requires proving a Hoare tuple for the procedure body, under a

– A list of inference rules should be in the abstract. Probably just discuss the always
predicate a bit, if at all. The point is just to have a theorem somewhere.

—-
In the terminology of Rely-Guarantee logics [?], transitions are guarantee relations.

When we need to express the steps of the other thread, and thus obtain a rely relation,
we simply transpose the self and other components of the states. Thus, concurroids may
be seen as a formalism for building up rely and guarantee relations in a structured way.

Concurroids are composed by entanglement. An entanglement of two concurroids
U and V interconnects (all or some of) the dually polarized transitions of U and V , while
adjoining their individual state spaces, to obtain a new concurroid in which the exchange
of heap ownership between U and V is internal. Obviously, there may be many different
ways to entangle concurroids, depending on which transitions of U and V are chosen
for interconnection, and which ones are left “dangling” for interconnection by future
entanglements. The sets of interconnected and dangling transitions may overlap as we
may interconnect some transitions, but also leave their copies dangling.

Some interconnection patterns are more common than others, so we introduce spe-
cial notation for them. We denote by U o V the concurroid which interconnects each
transition of U with each of V , leaving the transitions of U dangling, but shutting those
of V . Symmetrically for U n V . We denote by U ] V the concurroid in which no
transitions are interconnected, and all are left dangling.

Reasoning principles There are three rules in SCTS that allow for compositional rea-
soning along the various combinations of space, agency and time axes.

We first present the rule for parallel composition of threads; thus, it covers compo-
sitionality along the agency axis.

{p1}C1 {q1}@ U {p2}C2 {q2}@ U

{p1 ~ p2}C1 k C2 {q1 ~ q2}@ U
PAR

The 4-tuple {p}C {q}@ U is a Hoare-style specification expressing that the program C
has a precondition p, postcondition q, under transitions allowed by the concurroid U.

The rule uses subjective separating conjunction ~ [?] to split the state of C1 k C2
into two. In contrast to separation logic, the split doesn’t divide the state by labels into
label-disjoint halves. The subdivisions contain the same labels, but the contents of the
self and other portions differs. For example, as an illustration, ~ satisfies the following
equivalences over heaps and lock ownerships.

(priv
s7! hS ·[ hO ^ priv

o7! h) () (priv
s7! hS ^ priv

o7! hO ·[ h) ~ (priv
s7! hO ^ priv

o7! hS ·[ h)
(lock

s7! mS •mO ^ lock
o7! m) () (lock

s7! mS ^ lock
o7! mO • m) ~ (lock

s7! mO ^ lock
o7! mS • m)

The parallel composition starts with a self component priv
s7! hS ·[ hO in case of heaps

(lock
s7! (mS • mO) in case of locks). When the parent thread forks two child threads,

the parent’s self component splits between the children, while the children’s other
component are implicitly induced to preserve coherence. Thus, left childs self view
if priv

s7! hS (lock
s7! mS for locks), and other view is priv

o7! hO ·[ h (lock
o7! mO • m
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Fig. 2 FCSL inference rules.

� ` {p} c1 : B {q}@U �, x : B ` {[x/res]q} c2 : A {r}@U x < FV(r)
� ` {p} x c1; c2 : A {r}@U

SEQ

� ` {p1} c1 : A1 {q1}@U � ` {p2} c2 : A2 {q2}@U
� ` {p1 ~ p2} c1 k c2 : A1 ⇥ A2 {[⇡1 res/res]q1 ~ [⇡2 res/res]q2}@U

PAR
8x:B. {p} f (x) : A {q}@U 2 �
� ` 8x:B. {p} f (x) : A {q}@U

HYP

� ` {p1} c : A {q1}@U � ` (p1, q1) v (p2, q2)
� ` {p2} c : A {q2}@U

CONSEQ
� ` {p} c : A {q}@U r stable under U

� ` {p ~ r} c : A {q ~ r}@U
FRAME

� ` {e = true ^ p} c1 : A {q}@U � ` {e = false ^ p} c2 : A {q}@U
� ` {p} if e then c1 else c2 : A {q}@U

IF

� ` {p1} c : A {q1}@U � ` {p2} c : A {q2}@U
� ` {p1 ^ p2} c : A {q1 ^ q2}@U

CONJ
� ` {p} c : A {q}@U ↵ < dom �

� ` {9↵:B. p} c : A {9↵:B. q}@U
EXIST

� ` e : A p stable under U
� ` {p} return e : A {p ^ res = e}@U

RET
�,8x:B. {p} f (x) : A {q}@U, x:B ` {p} c : A {q}@U

� ` 8x:B. {p} (fix f . x. c)(x) : A {q}@U
FIX

� ` 8x:B. {p} F(x) : A {q}@U � ` e : B
� ` {[e/x]p} F(e) : A {[e/x]q}@U

APP
� ` {p} c : A {q}@U r stable under V
� ` {p ⇤ r} inject c : A {q ⇤ r}@U o V

INJECT

� `
⇢
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s7! h ⇤ p
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c
⇢
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s7! h0 ⇤ q
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@(P o U) o V P, U and V have disjoint sets of labels
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�9g0. g0 h0 ⇤ (� (g0)��⇤ q)

 

@P o U
HIDE

where  g h = 9k:heap. priv
s7! h ·[ k ^� (g) # k

a = (U, A,�, µ) is an action � ` (� ^ this w, �w0. (w,w0, res) 2 µ) v (p, q) p, q stable under U
� ` {p} act a : A {q}@U

ACTION

� does not bind logical variables. In first-order Hoare logics, logical variables are im-
plicitly universally quantified with global scope. In FCSL, we limit their scope to the
Hoare tuples in which they appear. This is required for specifying recursive procedures,
where a logical variable may be instantiated differently in each recursive call [9]. We
also assume a formation requirement on Hoare tuples FLV(p) ◆ FLV(q), i.e., that all
free logical variables of the postcondition also appear in the precondition.

The inference rules of the Hoare tuple judgments for commands and procedures
are presented in Figure 2. We note that the assertions and the annotations in the rules
(e.g., � in the HIDE rule) may freely use the variables in �. To reduce clutter, we
silently assume the checks that all such specification level-entities are well-typed in
their respective contexts �.

We have already discussed PAR, INJECT and HIDE rules in their versions where
the return type A = unit. The generalization to arbitrary A is straightforward. A side
condition of HIDE ensures that the sets of labels of P, U and V don’t clash, so the
entanglement (P o U) o V is defined. The rule FRAME is a special case of PAR when
c2 is taken to be the idle thread (i.e., c2 = return()). Just like in the rule RET, we
need to prove the framing assertion r stable, to account for the interference of the other
threads. The rule FIX requires proving a Hoare tuple for the procedure body, under a

Framing with respect to the other resource V.

– A list of inference rules should be in the abstract. Probably just discuss the always
predicate a bit, if at all. The point is just to have a theorem somewhere.

—-
In the terminology of Rely-Guarantee logics [?], transitions are guarantee relations.

When we need to express the steps of the other thread, and thus obtain a rely relation,
we simply transpose the self and other components of the states. Thus, concurroids may
be seen as a formalism for building up rely and guarantee relations in a structured way.

Concurroids are composed by entanglement. An entanglement of two concurroids
U and V interconnects (all or some of) the dually polarized transitions of U and V , while
adjoining their individual state spaces, to obtain a new concurroid in which the exchange
of heap ownership between U and V is internal. Obviously, there may be many different
ways to entangle concurroids, depending on which transitions of U and V are chosen
for interconnection, and which ones are left “dangling” for interconnection by future
entanglements. The sets of interconnected and dangling transitions may overlap as we
may interconnect some transitions, but also leave their copies dangling.

Some interconnection patterns are more common than others, so we introduce spe-
cial notation for them. We denote by U o V the concurroid which interconnects each
transition of U with each of V , leaving the transitions of U dangling, but shutting those
of V . Symmetrically for U n V . We denote by U ] V the concurroid in which no
transitions are interconnected, and all are left dangling.

Reasoning principles There are three rules in SCTS that allow for compositional rea-
soning along the various combinations of space, agency and time axes.

We first present the rule for parallel composition of threads; thus, it covers compo-
sitionality along the agency axis.

{p1}C1 {q1}@ U {p2}C2 {q2}@ U

{p1 ~ p2}C1 k C2 {q1 ~ q2}@ U
PAR

The 4-tuple {p}C {q}@ U is a Hoare-style specification expressing that the program C
has a precondition p, postcondition q, under transitions allowed by the concurroid U.

The rule uses subjective separating conjunction ~ [?] to split the state of C1 k C2
into two. In contrast to separation logic, the split doesn’t divide the state by labels into
label-disjoint halves. The subdivisions contain the same labels, but the contents of the
self and other portions differs. For example, as an illustration, ~ satisfies the following
equivalences over heaps and lock ownerships.

(priv
s7! hS ·[ hO ^ priv

o7! h) () (priv
s7! hS ^ priv

o7! hO ·[ h) ~ (priv
s7! hO ^ priv

o7! hS ·[ h)
(lock

s7! mS •mO ^ lock
o7! m) () (lock

s7! mS ^ lock
o7! mO • m) ~ (lock

s7! mO ^ lock
o7! mS • m)

The parallel composition starts with a self component priv
s7! hS ·[ hO in case of heaps

(lock
s7! (mS • mO) in case of locks). When the parent thread forks two child threads,

the parent’s self component splits between the children, while the children’s other
component are implicitly induced to preserve coherence. Thus, left childs self view
if priv

s7! hS (lock
s7! mS for locks), and other view is priv

o7! hO ·[ h (lock
o7! mO • m
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� ` {p} c1 : B {q}@U �, x : B ` {[x/res]q} c2 : A {r}@U x < FV(r)
� ` {p} x c1; c2 : A {r}@U
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� ` {p1} c1 : A1 {q1}@U � ` {p2} c2 : A2 {q2}@U
� ` {p1 ~ p2} c1 k c2 : A1 ⇥ A2 {[⇡1 res/res]q1 ~ [⇡2 res/res]q2}@U
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8x:B. {p} f (x) : A {q}@U 2 �
� ` 8x:B. {p} f (x) : A {q}@U

HYP

� ` {p1} c : A {q1}@U � ` (p1, q1) v (p2, q2)
� ` {p2} c : A {q2}@U

CONSEQ
� ` {p} c : A {q}@U r stable under U

� ` {p ~ r} c : A {q ~ r}@U
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� ` {e = true ^ p} c1 : A {q}@U � ` {e = false ^ p} c2 : A {q}@U
� ` {p} if e then c1 else c2 : A {q}@U

IF

� ` {p1} c : A {q1}@U � ` {p2} c : A {q2}@U
� ` {p1 ^ p2} c : A {q1 ^ q2}@U

CONJ
� ` {p} c : A {q}@U ↵ < dom �

� ` {9↵:B. p} c : A {9↵:B. q}@U
EXIST

� ` e : A p stable under U
� ` {p} return e : A {p ^ res = e}@U

RET
�,8x:B. {p} f (x) : A {q}@U, x:B ` {p} c : A {q}@U

� ` 8x:B. {p} (fix f . x. c)(x) : A {q}@U
FIX

� ` 8x:B. {p} F(x) : A {q}@U � ` e : B
� ` {[e/x]p} F(e) : A {[e/x]q}@U

APP
� ` {p} c : A {q}@U r stable under V
� ` {p ⇤ r} inject c : A {q ⇤ r}@U o V

INJECT

� `
⇢

priv
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where  g h = 9k:heap. priv
s7! h ·[ k ^� (g) # k

a = (U, A,�, µ) is an action � ` (� ^ this w, �w0. (w,w0, res) 2 µ) v (p, q) p, q stable under U
� ` {p} act a : A {q}@U

ACTION

� does not bind logical variables. In first-order Hoare logics, logical variables are im-
plicitly universally quantified with global scope. In FCSL, we limit their scope to the
Hoare tuples in which they appear. This is required for specifying recursive procedures,
where a logical variable may be instantiated differently in each recursive call [9]. We
also assume a formation requirement on Hoare tuples FLV(p) ◆ FLV(q), i.e., that all
free logical variables of the postcondition also appear in the precondition.

The inference rules of the Hoare tuple judgments for commands and procedures
are presented in Figure 2. We note that the assertions and the annotations in the rules
(e.g., � in the HIDE rule) may freely use the variables in �. To reduce clutter, we
silently assume the checks that all such specification level-entities are well-typed in
their respective contexts �.

We have already discussed PAR, INJECT and HIDE rules in their versions where
the return type A = unit. The generalization to arbitrary A is straightforward. A side
condition of HIDE ensures that the sets of labels of P, U and V don’t clash, so the
entanglement (P o U) o V is defined. The rule FRAME is a special case of PAR when
c2 is taken to be the idle thread (i.e., c2 = return()). Just like in the rule RET, we
need to prove the framing assertion r stable, to account for the interference of the other
threads. The rule FIX requires proving a Hoare tuple for the procedure body, under a

Framing with respect to the other resource V.

Framing — particular case of parallel composition 	

on the same resource U.

– A list of inference rules should be in the abstract. Probably just discuss the always
predicate a bit, if at all. The point is just to have a theorem somewhere.

—-
In the terminology of Rely-Guarantee logics [?], transitions are guarantee relations.

When we need to express the steps of the other thread, and thus obtain a rely relation,
we simply transpose the self and other components of the states. Thus, concurroids may
be seen as a formalism for building up rely and guarantee relations in a structured way.

Concurroids are composed by entanglement. An entanglement of two concurroids
U and V interconnects (all or some of) the dually polarized transitions of U and V , while
adjoining their individual state spaces, to obtain a new concurroid in which the exchange
of heap ownership between U and V is internal. Obviously, there may be many different
ways to entangle concurroids, depending on which transitions of U and V are chosen
for interconnection, and which ones are left “dangling” for interconnection by future
entanglements. The sets of interconnected and dangling transitions may overlap as we
may interconnect some transitions, but also leave their copies dangling.

Some interconnection patterns are more common than others, so we introduce spe-
cial notation for them. We denote by U o V the concurroid which interconnects each
transition of U with each of V , leaving the transitions of U dangling, but shutting those
of V . Symmetrically for U n V . We denote by U ] V the concurroid in which no
transitions are interconnected, and all are left dangling.

Reasoning principles There are three rules in SCTS that allow for compositional rea-
soning along the various combinations of space, agency and time axes.

We first present the rule for parallel composition of threads; thus, it covers compo-
sitionality along the agency axis.

{p1}C1 {q1}@ U {p2}C2 {q2}@ U

{p1 ~ p2}C1 k C2 {q1 ~ q2}@ U
PAR

The 4-tuple {p}C {q}@ U is a Hoare-style specification expressing that the program C
has a precondition p, postcondition q, under transitions allowed by the concurroid U.

The rule uses subjective separating conjunction ~ [?] to split the state of C1 k C2
into two. In contrast to separation logic, the split doesn’t divide the state by labels into
label-disjoint halves. The subdivisions contain the same labels, but the contents of the
self and other portions differs. For example, as an illustration, ~ satisfies the following
equivalences over heaps and lock ownerships.
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s7! hS ·[ hO ^ priv

o7! h) () (priv
s7! hS ^ priv

o7! hO ·[ h) ~ (priv
s7! hO ^ priv

o7! hS ·[ h)
(lock

s7! mS •mO ^ lock
o7! m) () (lock

s7! mS ^ lock
o7! mO • m) ~ (lock

s7! mO ^ lock
o7! mS • m)

The parallel composition starts with a self component priv
s7! hS ·[ hO in case of heaps

(lock
s7! (mS • mO) in case of locks). When the parent thread forks two child threads,

the parent’s self component splits between the children, while the children’s other
component are implicitly induced to preserve coherence. Thus, left childs self view
if priv

s7! hS (lock
s7! mS for locks), and other view is priv

o7! hO ·[ h (lock
o7! mO • m
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“Framing” rules in CSL
O'Hearn [CONCUR'04]

means that with procedure specifications �, and a shared-data in-
variant satisfying I , the command C satisfies the specification
{Q}C {R}.
The shared data structure can only be validly accessed within

atomic operations, and to do so brings the invariant temporarily
into play.

�; emp `
˘
Q ? I

¯
C

˘
R ? I

¯

�; I `
˘
Q

¯
atomic{C}

˘
R

¯
(1)

C must be executed in mutual exclusion with other ‘atomic’ com-
mands. In principle this might be achieved by the mechanisms of
transactional memory [8, 6], but in this paper we rely on the se-
rialisation properties of the hardware: C must invoke at most one
single-word read or write in the shared data structure governed by
I , or be a CAS instruction. Semantically we rely on Brookes’ proof
of soundness, which enables us to treat the shared data structure
as a single ‘resource’ and use a version of separation logic’s CCR
rule.1
Parallel composition requires that we satisfy pre-conditions sep-

arately, and guarantees that the post-conditions are separate on ter-
mination. The data-structure invariant is shared between the two
parallel compositions, just like named resource invariants in con-
current separation logic.

�; I `
˘
Q1

¯
C1

˘
R1

¯
�; I `

˘
Q2

¯
C2

˘
R2

¯

�; I `
˘
Q1 ? Q2

¯
C1kC2

˘
R1 ? R2

¯
(2)

The bodies of module procedures can make use of the invariant; the
rest of the program cannot. We state the module rule for a single
procedure definition; extension to several procedures is obvious.
Note that the invariant is not incorporated into the pre- and post-
conditions ofCf : atomic instructions insideCf can make use of the
invariant, but the procedure body is not itself treated as an atomic
instruction.2

�; I `
˘
Qf

¯
Cf

˘
Rf

¯

�, {Qf}f(xf ){Rf}; emp `
˘
Q

¯
C

˘
R

¯

�; emp `
˘
Q ? I

¯
module f(xf ) = Cf in C

˘
R ? I

¯
(3)

In order to construct our invariant we have had to make some
use of permissions [1]. E 7! F can be read as a total permission
for the heap cell at location E – i.e. permission to read, write and
dispose. It can be split into a collection of read-only permissions,
which can then be given to separate threads, enabling read-only
sharing. In this paper we require only that the invariant shares some
permissions with each thread, so that we can split a total permission
into two read permissions, one for the invariant and one for the
thread:

E 7! F () E

r7�! F ? E

r7�! F (4)
To read a heap cell we only need a read permission:

{E = N ^N

r7�!M}x := [E] {N r7�!M ^ x = M}

1 It follows that atomic{atomic{ . . . }} would fail to terminate.
2 In this rule we have used emp as the invariant formula outside the proof
of Cf . It would be possible to take a more general approach: the module
rule can be derived from a version of the make-named-resource rule

�; I1 ? I2 `
˘

Q

¯

C

˘

R

¯

�; I1 `
˘

Q ? I2
¯

C

˘

R ? I2
¯

and the resource-weakening rule

�; I1 `
˘

Q

¯

C

˘

R

¯

�; I1 ? I2 `
˘

Q

¯

C

˘

R

¯

Note that these two rules can be combined to give the standard separation-
logic frame rule.

pop() {
local t,n;
while(true) {
t = TOP;
if (t == nil) break;

H[tid] = t;
if (t != TOP)

continue;

n = t->tl;
if (CAS(&TOP,t,n))

break;
}

H[tid] = nil;

return t
}

push (b) {
local t,n;

for(n=0; n<=THREADS; n++)
if (H[n] == b)

return false;

while(true) {
t = TOP;
b->tl = t;
if (CAS(&TOP, t, b))
break;

}

return true

}

Figure 1. Source for non-blocking stack. The hazard pointer code
is highlighted. For compactness of the presentation we use a for
loop in push to perform the scan operation from Michael’s algo-
rithm.

If a read permission is in the invariant, any thread can read a
shared cell in an atomic operation, but only the thread that has the
matching permission can write it (also in an atomic operation).

3. Specification of the algorithm
Michael’s algorithm, shown in figure 1, implements a shared stack,
with operations push and pop. In [10], Michael proves the correct-
ness of the stack algorithm using hazard pointers.
We can see this as a simple implementation of a storage alloca-

tor for fixed-size heap records: pop is a kind of malloc or cons,
push a kind of free, the stack a kind of freelist. We can give
separation-logic safety specifications for his operations, allowing
for the possibility that pop will not work on an empty stack and,
because of the vagaries of his mechanism, that push might fail:

Method Pre-condition Post-condition
pop() emp (ret 7! ) _ (ret = nil ^ emp)

push(x) x 7! (ret ^ emp) _ (¬ret ^ x 7! )

Note that this specification need say nothing about the way that
push and pop are implemented. A client is completely insulated
from those details.

3.1 A client
Because the interface presented by the stack is somewhat inconve-
nient, and to demonstrate that the client is insulated from the inter-
ference used in the stack, we show how to build a simple memory
manager.
We require an allocmechanism, which works even if the stack

is empty. We presume that the records on the heap are single-cell
records, which originated from the system memory allocator new.
Alloc tries pop, and if that fails, uses the (perhaps much slower)
new.
˘
emp

¯

alloc() {
local y;
y=pop();
if (y==nil) y=new();
return y;

}̆

ret 7!
¯

We present a brief sketch of alloc’s verification:
˘
emp

¯

Resource context  
weakening

means that with procedure specifications �, and a shared-data in-
variant satisfying I , the command C satisfies the specification
{Q}C {R}.
The shared data structure can only be validly accessed within

atomic operations, and to do so brings the invariant temporarily
into play.

�; emp `
˘
Q ? I

¯
C

˘
R ? I

¯

�; I `
˘
Q

¯
atomic{C}

˘
R

¯
(1)

C must be executed in mutual exclusion with other ‘atomic’ com-
mands. In principle this might be achieved by the mechanisms of
transactional memory [8, 6], but in this paper we rely on the se-
rialisation properties of the hardware: C must invoke at most one
single-word read or write in the shared data structure governed by
I , or be a CAS instruction. Semantically we rely on Brookes’ proof
of soundness, which enables us to treat the shared data structure
as a single ‘resource’ and use a version of separation logic’s CCR
rule.1
Parallel composition requires that we satisfy pre-conditions sep-

arately, and guarantees that the post-conditions are separate on ter-
mination. The data-structure invariant is shared between the two
parallel compositions, just like named resource invariants in con-
current separation logic.

�; I `
˘
Q1

¯
C1

˘
R1

¯
�; I `

˘
Q2

¯
C2

˘
R2

¯

�; I `
˘
Q1 ? Q2

¯
C1kC2

˘
R1 ? R2

¯
(2)

The bodies of module procedures can make use of the invariant; the
rest of the program cannot. We state the module rule for a single
procedure definition; extension to several procedures is obvious.
Note that the invariant is not incorporated into the pre- and post-
conditions ofCf : atomic instructions insideCf can make use of the
invariant, but the procedure body is not itself treated as an atomic
instruction.2

�; I `
˘
Qf

¯
Cf

˘
Rf

¯

�, {Qf}f(xf ){Rf}; emp `
˘
Q

¯
C

˘
R

¯

�; emp `
˘
Q ? I

¯
module f(xf ) = Cf in C

˘
R ? I

¯
(3)

In order to construct our invariant we have had to make some
use of permissions [1]. E 7! F can be read as a total permission
for the heap cell at location E – i.e. permission to read, write and
dispose. It can be split into a collection of read-only permissions,
which can then be given to separate threads, enabling read-only
sharing. In this paper we require only that the invariant shares some
permissions with each thread, so that we can split a total permission
into two read permissions, one for the invariant and one for the
thread:

E 7! F () E

r7�! F ? E

r7�! F (4)
To read a heap cell we only need a read permission:

{E = N ^N

r7�!M}x := [E] {N r7�!M ^ x = M}

1 It follows that atomic{atomic{ . . . }} would fail to terminate.
2 In this rule we have used emp as the invariant formula outside the proof
of Cf . It would be possible to take a more general approach: the module
rule can be derived from a version of the make-named-resource rule

�; I1 ? I2 `
˘

Q

¯

C

˘

R

¯

�; I1 `
˘

Q ? I2
¯

C

˘

R ? I2
¯

and the resource-weakening rule

�; I1 `
˘

Q

¯

C

˘

R

¯

�; I1 ? I2 `
˘

Q

¯

C

˘

R

¯

Note that these two rules can be combined to give the standard separation-
logic frame rule.

pop() {
local t,n;
while(true) {
t = TOP;
if (t == nil) break;

H[tid] = t;
if (t != TOP)

continue;

n = t->tl;
if (CAS(&TOP,t,n))

break;
}

H[tid] = nil;

return t
}

push (b) {
local t,n;

for(n=0; n<=THREADS; n++)
if (H[n] == b)

return false;

while(true) {
t = TOP;
b->tl = t;
if (CAS(&TOP, t, b))
break;

}

return true

}

Figure 1. Source for non-blocking stack. The hazard pointer code
is highlighted. For compactness of the presentation we use a for
loop in push to perform the scan operation from Michael’s algo-
rithm.

If a read permission is in the invariant, any thread can read a
shared cell in an atomic operation, but only the thread that has the
matching permission can write it (also in an atomic operation).

3. Specification of the algorithm
Michael’s algorithm, shown in figure 1, implements a shared stack,
with operations push and pop. In [10], Michael proves the correct-
ness of the stack algorithm using hazard pointers.
We can see this as a simple implementation of a storage alloca-

tor for fixed-size heap records: pop is a kind of malloc or cons,
push a kind of free, the stack a kind of freelist. We can give
separation-logic safety specifications for his operations, allowing
for the possibility that pop will not work on an empty stack and,
because of the vagaries of his mechanism, that push might fail:

Method Pre-condition Post-condition
pop() emp (ret 7! ) _ (ret = nil ^ emp)

push(x) x 7! (ret ^ emp) _ (¬ret ^ x 7! )

Note that this specification need say nothing about the way that
push and pop are implemented. A client is completely insulated
from those details.

3.1 A client
Because the interface presented by the stack is somewhat inconve-
nient, and to demonstrate that the client is insulated from the inter-
ference used in the stack, we show how to build a simple memory
manager.
We require an allocmechanism, which works even if the stack

is empty. We presume that the records on the heap are single-cell
records, which originated from the system memory allocator new.
Alloc tries pop, and if that fails, uses the (perhaps much slower)
new.
˘
emp

¯

alloc() {
local y;
y=pop();
if (y==nil) y=new();
return y;

}̆

ret 7!
¯

We present a brief sketch of alloc’s verification:
˘
emp

¯

Parallel composition



“Framing” rules in RGSep
Vafeiadis-Parkinson [CONCUR’07]

Definition 14. Let p stable under R be defined by induction on p as follows

• P stable under R always holds.

• P stable under R if and only if (P ; R) ⇒ P .

• For op ::= ∗ | ∧ | ∨, let (p1 op p2) stable under R if and only if p1 stable under R and

p2 stable under R.

• For Q ::= ∀ | ∃, let (Qx. p) stable under R if and only if p stable under R.

If an assertion is syntactically stable, then it is also semantically stable in the following

sense:

Lemma 15. If p stable under R, l, s, i |=RGSep p and (s, s′) ∈ R, then l, s′, i |=RGSep p.

The converse is not true. For example, consider a relation R that writes an arbitrary

value to x without changing the rest of the heap. Then, ∃n. x (→ n is stable under R,

whereas the assertions ∃n. x (→ n ∧ n ≤ 0 and ∃n. x (→ n ∧ n > 0 are not. Therefore,

∃n. x (→ n ∧ n ≤ 0 ∨ ∃n. x (→ n ∧ n > 0 is not syntactically stable although it is seman-

tically equivalent to ∃n. x (→ n .

3.1.4 Specifications and proof rules

Specifications of a command C are quadruples (p,R,G, q), where

• The precondition p describes the set of initial states in which C might be executed

(both its local and shared parts).

• The rely R is a relation (i.e. a set of actions) describing the interference caused by

the environment.

• The guarantee G is a relation describing the changes to the shared state, caused by

the program.

• The postcondition q describes the possible resulting local and shared states, should

the execution of C terminate.

The judgement ⊢ C sat (p,R,G, q) says that any execution of C from an initial state

satisfying p and under environment interference R (i) does not fault (e.g. accesses unal-

located memory), (ii) causes interference at most G, and, (iii) if it terminates, its final

state satisfies q.

First, we have the familiar specification weakening rule:

R ⊆ R′ p ⇒ p′

⊢ C sat (p′, R′, G′, q′) G′ ⊆ G q′ ⇒ q

⊢ C sat (p,R,G, q)
(Weaken)

40

Rely/Guarantee  
weakening

composition are the separating conjunction (∗) of the preconditions and postconditions

of the individual threads. In essence, this is the normal conjunction of the shared state

assertions, and the separating conjunction of the local state assertions (cf. the semantics

of ∗ in §3.1.1).

⊢ C1 sat (p1, R ∪ G2, G1, q1)

⊢ C2 sat (p2, R ∪ G1, G2, q2)

⊢ (C1∥C2) sat (p1 ∗ p2, R,G1 ∪ G2, q1 ∗ q2)
(Par)

As the interference experienced by thread C1 can come from C2 or from the environment

of the parallel composition, we have to ensure that both interferences (R∪G2) are allowed.

Similarly C2 must be able to tolerate interference from C1 and from the environment, R.

The most complex rule is that of atomic commands, ⟨C⟩. Instead of tackling the

general case directly, it is easier if we have two rules. The first rule checks that the

atomic block meets its specification in an empty environment, and then checks that the

precondition and the postcondition are stable with respect to the actual environment, R.

This reduces the problem from an arbitrary rely condition to an empty rely condition.

⊢ ⟨C⟩ sat (p, ∅, G, q)

p stable under R q stable under R

⊢ ⟨C⟩ sat (p,R,G, q)
(AtomR)

The second rule is somewhat trickier. Here is a first attempt:

⊢ C sat (P ∗ P ′, ∅, ∅, Q ∗ Q′) (P ! Q) ⊆ G

⊢ ⟨C⟩ sat (P ∗ P ′, ∅, G, Q ∗ Q′)

Within an atomic block, we can access the shared state P , but we must check that

changing the shared state from P from Q is allowed by the guarantee G. This rule is

sound, but too weak in practice. It requires that the critical region changes the entire

shared state from P to Q and that the guarantee condition allows such a change. We

can extend the rule by allowing the region to change only part of the shared state P into

Q, leaving the rest of the shared state (F ) unchanged, and checking that the guarantee

permits the small change P ! Q.

P,Q precise ⊢ C sat (P ∗ P ′, ∅, ∅, Q ∗ Q′) (P ! Q) ⊆ G

⊢ ⟨C⟩ sat (P ∗ F ∗ P ′, ∅, G, Q ∗ F ∗ Q′)
(Atom)

Precision For soundness, the rule requires that P and Q are precise1 assertions and

that all branches of the proof use the same P and Q for the same atomic region. Without

this requirement, the logic admits the following erroneous derivation:

1Precise assertions were defined in §2.4.1 (Def. 8).
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• [Owicki-Gries:CACM76] - reasoning about parallel composition is not compositional; subjectivity 
fixes that;	


• [OHearn:CONCUR04] - only one type of resources - critical sections;  
we allow one to define arbitrary resources;	


• [Feng-al:ESOP07,Vafeiadis-Parkinson:CONCUR07] - framing over Rely/Guarantee, but only one 
shared resource: we allow multiple ones;	


• [Feng:POPL09] - introduced local Rely/Guarantee; we improve on it by introducing  
a subjective state and explicitly identifying resources as STS, hence dialysing Guarantee and Rely;	


• [DinsdaleYoung-al:ECOOP10] - first introduced concurred protocols; 
we avoid heavy use of permissions (for resources, actions, regions etc.) - self-state defines what a thread is 
allowed to do with a resource;	


• [Krishnaswami-al:ICFP12] - superficially substructural types; that work doesn’t target concurrency;	


• [DinsdaleYoung-al:POPL13] - general framework for concurrency logic; 
we present a particular logic, not clear whether it’s an instance of  Views;	


• [Turon-al:POPL13,ICFP13] - CaReSL and reasoning about contextual refinement; 
we don’t address CR, our PCM-based self/other generalise Turon’s tokens; we compose resources by 
communication;	


• [Svendsen-al:ESOP13,ESOP14] - use much richer semantic domain,  
we are avoiding fractional permissions, using communication instead of view-shifts.

Related Work
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Is entanglement associative?

Sort of.



- “apart”, doesn’t connect channels, 	

   leaves all loose.

×

Is entanglement associative?

- connects all channels pair-wise,	

  shuts channels оf the right operand,	

  leaves left one’s loose

⋊

Lemma: U ⋊ (V1 × V2) = (U ⋊ V1) ⋊ V2

Sort of.
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1 Introduction

There are two main styles of program logics for reasoning about shared-memory con-
currency, customarily divided according to the supported kind of granularity of inter-
ference between concurrent programs.

The main representative of logics for coarse-grained concurrency, where interfer-
ence is confined to critical section, is Concurrent Separation Logic (CSL) [?,?]. CSL
employs the ideas of shared resources and associated resource invariants [?], to abstract
the interference between threads. Resource r is a chunk of shared state, and a resource
invariant I is a predicate over states, which holds of r whenever all threads are outside
the critical section. By mutual exclusion, when a thread enters a critical section for r,
it acquires ownership and hence exclusive access to r’s state. The thread may mutate
the shared state and violate the invariant I, but it must restore I before releasing r and
leaving the critical section, as given by the following CSL rule [?].

� ` {(p ⇤ I) ^ b} c {q ⇤ I}
�, r : I ` {p} with r when b do c {q}

SECTIONCSL

� is a context of currently existing resources. A private heap of a thread may be pro-
moted into a shared resource in a scoped manner by the folowing rule.

�, r : I ` {p} c {q}
� ` {p ⇤ I} resource r in c {q ⇤ I}

RESOURCECSL

As inteference is handled by �, the rule for parallel composition assumes that forked
threads don’t share any state beyond that of the resources in �, and may divide the
private state of the parent thread disjointly among the children.

� ` {p1} c1 {q1} � ` {p2} c2 {q2}
� ` {p1 ⇤ p2} c1 k c2 {q1 ⇤ q2}

PARCSL

The main representative of logics for fine-grained concurrency, where interference
may occur between any two memory operations, is Rely/Guarantee (RG) [?]. In RG, the

O'Hearn [CONCUR'04]
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Allocating a Ticketed Lock

(owner, next ) = {

}

owner := 0;

next  := 0;

with_tlock , body

hide
coh

(tlock `(owner,next)),(as,;)
{

}

body;



Allocating a Ticketed Lock

(owner, next ) = {

}

owner := 0;

next  := 0;

with_tlock , body

Scoped concurroid creation/disposal
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Injection Rule

be different in the two threads, but the way to access it in assertions and proofs is the
same. This is in contrast to a proof with classical auxiliary state [?], where the threads
have to name their auxiliary variables differently, thus preventing the reuse of the same
verification of incr in parallel composition [?].

(AN: Should I include here a comment on relation of subjectivity to RG? I think that’s prob-
ably best left for related work.)X

Injection The PAR rule requires that the composed programs share the same concur-
roid U, which describes the totality of their resources. If the programs use different
concurroids, they first have to be brought into a common entanglement, via the rule
INJECT.

{p}C {q}@ U r stable under V

{p ⇤ r} injectV C {q ⇤ r}@ U o V
INJECT

If C is verified wrt. a small concurroid U, it can be injected (i.e. coerced) into a larger
concurroid U o V . Reading the rule bottom-up, it says that we can ignore V , as V’s
transitions can’t influence C’s state. C’s state may be influenced by communication
between V and U, but this is already accounted for in the non-internal transitions of U.
In programs, we use the explicit coercion injectV to describe the change of “type” from
U to U o V .

When verifying C against U, we should only use the part of the state containing
labels relevant for U. The connective ⇤ splits the assertions into two portions containing
disjoint labels. By convention, p and q describe labels related to U, as they appear in
the premise in a Hoare triple with the concurroid U. The side condition on the stability
of r, implies that r uses only the labels of V .

Stability of r means that r remains valid no matter which transitions the other thread
takes over the portion of the states descibed by the labels of V . We will define stabil-
ity formally in Section ??, but here illustrate by example how stability factors in the
implementation and verification of incr.

The atomic commands for reading and writing to a pointer x have specification
relative to the concurroid P for private state.

{priv
s7! x � v} read x {priv

s7! x � v ^ r = v}@P
{priv

s7! x � �} write x v {priv
s7! x � v}@P

The commands for acquiring and releasing lock have specifications relative to the con-
curroid CSLlock = P o Llock, because they exchange ownership of the protected pointer
x between P and Llock.

{priv
s7! empty ⇤ lock

s7! (⇠⇠⇠Own, aS)}
acquire

{9aO.priv
s7! x � aS + aO ⇤ (lock

s7! (Own, aS) ^ lock
o7! (�, aO))}@CSLlock

{priv
s7! x � �(aS) + aO ⇤ (lock

s7! (Own, aS) ^ lock
o7! (�, aO))}

release�
{priv

s7! empty ⇤ lock
s7! (⇠⇠⇠Own,�(aS))}@CSLlock

8

⧓

where ⧓ = ⋈, ⋊, ⋉,×...
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• Subjective state allows one to give  
a lower bound to the joint contribution:  
 
         “I know what is my contribution.”	


!

• Hiding (or scoping) allows one to provide  
an upper bound for the contribution:  
 
“When everyone is done, we can the auxiliaries are summed up. ”

On the role of hiding
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