COMPILING A HIGHER-ORDER SMART CONTRACT LANGUAGE TO LLVM

Vaivaswatha Nagaraj, Jacob Johannsen, Anton Trunov, George Pirlea, Amrit Kumar and Ilya Sergey
Zilliga Research

N
V Scilla - Smart Contract Intermediate Level Language System Architecture
e DSL for blockchains: Used to write smart-contracts.
e Typed, higher-order, polymorphic language in the ML family:. R R R P LR P +
_ o | Blockchain Smart |
e Currently interpreted in production. This work explores its compilation. : antgact(l\ég?ule {
S o in C++
e state variable
(foo.scilla I | |
The Compiler and Runtime & message | e pdate
\Y; Y, |
e The compiler, written in OCaml (using LLVM’s OCaml bindings), shares the parser and type-checker with the existing interpreted o b ¥
implementation. I P + o + {
e The runtime implements language built-in operations and provides an interface b/w the JI'T ed code and the blockchain. I T ____________ g H},TCE?\(’?;TD)I T : fi;};?ngﬂéiTel I
| | bobonoe beo st | (SRTL) | |
| | | , e + |
Type Pattern | | O | |
Annotated DCE Match Uncurrying Monomorphize Closur.e LLVMJR | | roo-seitlal | |
: Conversion Generation '
AST Flattening I I \I/ : I
S | I Iscilla compiter| I
B | | |in oCaml (SC) | |
| | bomn o + |
- - o |
Experimental Results | | Scilla Virtual Machine I
In comparison to the reference interpreter: I L Voo . in ocaml & C++ (SVM) I
| | JIT Cache | |
e Synthetic tests like Ackermann function computation and Church numerals show improvements from 47x to more than 100x. I Fommommmemeoes ¥ I
e Production benchmarks show improvements ranging from 5x to 10x. Sl ¥
- O O OO —_— e _— _— I

: Part I: Front-End Transformations

Pattern Match Flattening Uncurrying

e Scilla uses curried semantics. Transform the AST to be uncurried.

e Nested patterns are flattened into nested pattern matches.

e Transforms nested sequence of functions to a single function with multiple arguments.

e [nables direct translation to eflicient LLVM switch statements.

Before Before

1 fun (p : List (Option Int32)) =
2 match p with

3 | Nil = z | Nil = z

4 | Cons (Some xX) xXs = X | Cons a xs =
5

6

1 fun (p : List (Option Int32)) =
2
3
4

| Cons _ _ =z 5 match a with
6
7
8
9

match p with

1 fun (x : Int32) = 1 fun (x : Int32, y : Int32) =
2 fun (y : Int32) = 2 builtin add x y
3 builtin add x y

| Some x = X

| _ =z ,

end

end

end The syntax used in these examples is not always legal Scilla syntax.
We don’t have a textual syntax for every intermediate form.

Monomorphization Closure Conversion

e Parametric polymorphism is implemented via monomorphization (as against type erasure). e In Scilla, functions can be nested: inner functions have access to the free variables that are

e A higher-order type-flow analysis (conservatively) computes the possible ground types that may defined outside their bodies.
fow into a type variable. e Closure conversion eliminates free variables by collecting them in environments taken as a

function’s additional argument.

e Polymorphic expressions are specialized with all types computed by the analysis.

e The modified function with no free variable accesses is lifted to global level (thus translatable to

an LLVM function).

Every reference to the function is now a pair, of the function’s pointer and its environment.
let option_to_bool = option_to_bool =
tfun A = Int32 —

fun (a : Option ’A) = fun (a : Option Int32) =
match a with match a with

| Some _ = True | Some _ = True 1 let f1 =
| None = False | None = False let y = Int32 1 in
in ; String — fun (x : Int32) =
let otb_i32 = @option_to_bool Int32 in fun (a : Option String) = builtin add x y
let otb_string = Qoption_to_bool String in ... match a with 5 in ...
| Some _ = True
| None = False]

let £2 =
fun (e : {y : Int32}, x : Int32) =
let y = e.y in
builtin add x y
in
let f1 /

Int32 1 in
new {y : Int32} in

© 00 N O O b W N -

otb_i32 = option_to_bool[Int32] in
otb_string = option_to_bool[String] in ...

[
o

—
-

Part 11: Mapping Scilla to LLVM-IR

Type Descriptors Primitive Types

e Type Descriptors are data structures defined in the runtime e Integer types are wrapped with an LLVM struct type to dit- e Map values are boxed, handled through an opaque pointer.
library, objects of which are created in the JI'T ed code. ferentiate signedness. For example the Scilla type Int32 be- e The runtime library creates and operates on Map values.

e A global array of type descriptors, with an entry for every type comes the LLVM type %#Int32 = type { 132 }. e Internally, the runtime library uses un-
that occurs in the Scilla program, with each type identified e String and ByStr (bytes of arbitrary length) types are ordered_map<string, any> any is used to enable
by its index in the array, is inserted by the compiler. translated to LLVM types %String = { i8%, i32 } and representing values of any Scilla type, including nested maps

e Some functions in the runtime library (such as the JSON LBystr = { 18%, 132 }. and user-defined types.
(de)serializer) that can operate on different Scilla types, take e Fixed sized byte sequences ByStrX (i.e., X is known stati-
in a type descriptor argument. cally) are expressed as LLVM array types [X x 18 J.

Algebraic Data Types Closures

e Algebraic data types, aka variants or tagged The compiler generates three LLVM types for the o A closureis represented by an anonymous struct e It the function’s return type cannot be “by
unions, are composite types that have one or List ADT: type { fundef_sig*, voidx* }. value”, then the second argument will be a stack
more “constructors” (sum type), each defininga tname = type { i8, ... e fundef_sig is the signature of the LLVM func- pointer (“sret”) where the return value must be
tuple (product type). o %nil = type <{ i8 }> tion definition. The voidx* represents the envi- stored.

e A canonical example of List defined in Scilla, e Ycons = type <{ i8, Int32, %tname* }> ronment pointer. To avoid ABI complexities, generated LLVM
with two constructors Cons and Nil: o All Scilla functions are represented as closures, functions and the hand written functions in the

The 18 field (called the tag) .m /tname doetermme?s with their first argument being the environment runtime library that they may call, all follow the
i type MyList = the constructor used. No object of type %tname is pointer. simple rule that if the value size is larger than

> | Wil | built. Only pointers to it are type-casted to the right two eightbytes, we define that parameter (or re-
» | Cons of Int32 MyList constructor before use. Packed LLVM structs are turn value) to be passed by reference (i.e. via

e ADT objects are boxed. d.e. represented using used to simplify access in the runtime library. a stack pointer).

a pointer.

BTEX TikZposter

