
LATEX TikZposter

Compiling a Higher-Order Smart Contract Language to LLVM

Vaivaswatha Nagaraj, Jacob Johannsen, Anton Trunov, George P̂ırlea, Amrit Kumar and Ilya Sergey
Zilliqa Research

Compiling a Higher-Order Smart Contract Language to LLVM

Vaivaswatha Nagaraj, Jacob Johannsen, Anton Trunov, George P̂ırlea, Amrit Kumar and Ilya Sergey
Zilliqa Research

Scilla - Smart Contract Intermediate Level Language
� DSL for blockchains: Used to write smart-contracts.

� Typed, higher-order, polymorphic language in the ML family.

� Currently interpreted in production. This work explores its compilation.

The Compiler and Runtime

� The compiler, written in OCaml (using LLVM’s OCaml bindings), shares the parser and type-checker with the existing interpreted
implementation.

� The runtime implements language built-in operations and provides an interface b/w the JIT’ed code and the blockchain.

Type
Annotated

AST
DCE

Pattern
Match

Flattening
Uncurrying Monomorphize

Closure
Conversion

LLVM-IR
Generation

Experimental Results
In comparison to the reference interpreter:

� Synthetic tests like Ackermann function computation and Church numerals show improvements from 47x to more than 100x.

� Production benchmarks show improvements ranging from 5x to 10x.

System Architecture

 +----------------------+
 | Blockchain Smart |
 | Contract Module |
 | in C++ (BC) |
 +----------------------+
 + state variable
 | + ^
 foo.scilla | | |
 & message | fetch| |
 | | |update
 v v |

+--------------------------------------+---------------------------------+
| |
| +-------------+ +----------------+ |
+----------------->	JIT Driver	+-->	Scilla Run-time		
		in C++ (JITD)		Library in C++	
	+-+-------+---+	(SRTL)			
		^ +----------------+			
	foo.scilla				
		foo.ll			
	v				
	+--+-------+----+				
		Scilla Compiler			
		in OCaml (SC)			
	+---------------+				
	Scilla Virtual Machine				
v in OCaml & C++ (SVM)					
+-----+-------+					
	JIT Cache				
+-------------+					
+--+

Part I: Front-End Transformations

Pattern Match Flattening

� Nested patterns are flattened into nested pattern matches.

� Enables direct translation to efficient LLVM switch statements.

Before

1 fun (p : List (Option Int32)) ⇒
2 match p with

3 | Nil ⇒ z

4 | Cons (Some x) xs ⇒ x

5 | Cons _ _ ⇒ z

6 end

After

1 fun (p : List (Option Int32)) ⇒
2 match p with

3 | Nil ⇒ z

4 | Cons a xs ⇒
5 match a with

6 | Some x ⇒ x

7 | _ ⇒ z

8 end

9 end The syntax used in these examples is not always legal Scilla syntax.
We don’t have a textual syntax for every intermediate form.

Uncurrying

� Scilla uses curried semantics. Transform the AST to be uncurried.

� Transforms nested sequence of functions to a single function with multiple arguments.

Before

1 fun (x : Int32) ⇒
2 fun (y : Int32) ⇒
3 builtin add x y

After

1 fun (x : Int32, y : Int32) ⇒
2 builtin add x y

Monomorphization

� Parametric polymorphism is implemented via monomorphization (as against type erasure).

� A higher-order type-flow analysis (conservatively) computes the possible ground types that may
flow into a type variable.

� Polymorphic expressions are specialized with all types computed by the analysis.

Before

1 let option_to_bool =

2 tfun ’A ⇒
3 fun (a : Option ’A) ⇒
4 match a with

5 | Some _ ⇒ True

6 | None ⇒ False

7 in

8 let otb_i32 = @option_to_bool Int32 in

9 let otb_string = @option_to_bool String in ...

After

1 let option_to_bool =

2 [Int32 →
3 fun (a : Option Int32) ⇒
4 match a with

5 | Some _ ⇒ True

6 | None ⇒ False

7 ; String →
8 fun (a : Option String) ⇒
9 match a with

10 | Some _ ⇒ True

11 | None ⇒ False]

12 in

13 let otb_i32 = option_to_bool[Int32] in

14 let otb_string = option_to_bool[String] in ...

Closure Conversion

� In Scilla, functions can be nested: inner functions have access to the free variables that are
defined outside their bodies.

� Closure conversion eliminates free variables by collecting them in environments taken as a
function’s additional argument.

� The modified function with no free variable accesses is lifted to global level (thus translatable to
an LLVM function).

� Every reference to the function is now a pair, of the function’s pointer and its environment.

Before

1 let f1 =

2 let y = Int32 1 in

3 fun (x : Int32) ⇒
4 builtin add x y

5 in ...

After

1 let f2 =

2 fun (e : {y : Int32}, x : Int32) ⇒
3 let y = e.y in

4 builtin add x y

5 in

6 let f1 =

7 let y = Int32 1 in

8 let e = new {y : Int32} in

9 e.y ← y;

10 {f2, e}

11 in ...

Part II: Mapping Scilla to LLVM-IR

Type Descriptors

� Type Descriptors are data structures defined in the runtime
library, objects of which are created in the JIT’ed code.

� A global array of type descriptors, with an entry for every type
that occurs in the Scilla program, with each type identified
by its index in the array, is inserted by the compiler.

� Some functions in the runtime library (such as the JSON
(de)serializer) that can operate on different Scilla types, take
in a type descriptor argument.

Primitive Types

� Integer types are wrapped with an LLVM struct type to dif-
ferentiate signedness. For example the Scilla type Int32 be-
comes the LLVM type %Int32 = type { i32 }.

� String and ByStr (bytes of arbitrary length) types are
translated to LLVM types %String = { i8*, i32 } and
%Bystr = { i8*, i32 }.

� Fixed sized byte sequences ByStrX (i.e., X is known stati-
cally) are expressed as LLVM array types [X × i8].

Maps

� Map values are boxed, handled through an opaque pointer.

� The runtime library creates and operates on Map values.

� Internally, the runtime library uses un-

ordered_map<string, any>. any is used to enable
representing values of any Scilla type, including nested maps
and user-defined types.

Algebraic Data Types

� Algebraic data types, aka variants or tagged
unions, are composite types that have one or
more “constructors” (sum type), each defining a
tuple (product type).

� A canonical example of List defined in Scilla,
with two constructors Cons and Nil:

1 type MyList =

2 | Nil

3 | Cons of Int32 MyList

� ADT objects are boxed, i.e. represented using
a pointer.

The compiler generates three LLVM types for the
List ADT:

� %tname = type { i8, ... }

� %nil = type <{ i8 }>

� %cons = type <{ i8, Int32, %tname* }>

The i8 field (called the tag) in %tname determines
the constructor used. No object of type %tname is
built. Only pointers to it are type-casted to the right
constructor before use. Packed LLVM structs are
used to simplify access in the runtime library.

Closures

� A closure is represented by an anonymous struct
type { fundef_sig*, void* }.

� fundef_sig is the signature of the LLVM func-
tion definition. The void* represents the envi-
ronment pointer.

� All Scilla functions are represented as closures,
with their first argument being the environment
pointer.

� If the function’s return type cannot be “by
value”, then the second argument will be a stack
pointer (“sret”) where the return value must be
stored.

� To avoid ABI complexities, generated LLVM
functions and the hand written functions in the
runtime library that they may call, all follow the
simple rule that if the value size is larger than
two eightbytes, we define that parameter (or re-
turn value) to be passed by reference (i.e. via
a stack pointer).

