
Automated Repair of Heap-Manipulating
Programs using Deductive Synthesis

Thanh-Toan Nguyen1, Quang-Trung Ta1, Ilya Sergey2,1, and Wei-Ngan Chin1

1 School of Computing, National University of Singapore
2 Yale-NUS College, Singapore

{toannt, taqt, ilya, chinwn}@comp.nus.edu.sg

Abstract. We propose a novel method to automatically repairing buggy
heap-manipulating programs using constraint solving and deductive syn-
thesis. Given an input program C and its formal specification in the form
of a Hoare triple: {P} C {Q}, we use a separation-logic-based verifier
to verify if program C is correct w.r.t. its specifications. If program C
is found buggy, we then repair it in the following steps. First, we rely
on the verification results to collect a list of suspicious statements of
the buggy program. For each suspicious statement, we temporarily re-
place it with a template patch representing the desired statements. The
template patch is also formally specified using a pair of unknown pre-
and postcondition. Next, we use the verifier to analyze the temporarily
patched program to collect constraints related to the pre- and postcon-
dition of the template patch. Then, these constraints are solved by our
constraint solving technique to discover the suitable specifications of the
template patch. Subsequently, these specifications can be used to syn-
thesize program statements of the template patch, consequently creating
a candidate program. Finally, if the candidate program is validated, it
is returned as the repaired program. We demonstrate the effectiveness
of our approach by evaluating our implementation and a state-of-the-
art approach on a benchmark of 231 buggy programs. The experimental
results show that our tool successfully repairs 223 buggy programs and
considerably outperforms the compared tool.

1 Introduction
The goal of automated program repair (APR) is to identify fragments of a pro-
gram that contains bugs and then to discover a patch that can be applied to
fix the issue. This intuitive definition of APR and its evident practical util-
ity have aroused a lot of interest and researchers have proposed various ap-
proaches to automatically fixing buggy programs, using ideas from mutation
testing [21,29,41,52,53], mining of semantic constraints [35,36,37], symbolic anal-
ysis of the reference implementations [34,46], and deep learning [15,33].

However, one of the current limitations in APR is that few studies focus
on repairing heap-manipulating programs. One of them is a mutation-based ap-
proach [28] that combines formal verification and genetic programming to repair
buggy programs. Concretely, this approach uses genetic programming operators,
such as mutate, insert, delete, to generate mutated programs, and then use a ver-
ifier to validate these programs. However, these tactics are insufficient to repair

non-trivial bugs in heap-manipulating programs. In another study, Verma and
Roy [50] enable users to express their expected program’s graphical states at dif-
ferent program points in a debug-and-repair process. Their synergistic method is
effective in fixing various bug patterns of heap-manipulating programs, but not
fully automated. In contrast, we aim to build a fully automated method that re-
quires only program specifications in the form of pre- and postconditions. Similar
to our approach in using formal specifications, the previous approaches [17,49]
leverage the static verifier Infer [2,3] to repair buggy programs. Although they
target large-scale projects, these tools can fix only memory-related bugs, such
as null dereferences, memory leaks, and resource leaks. In contrast, our work
aims to repair more complicated bugs related to the functional correctness of
heap-manipulating programs.

In this work, we introduce a fully automated approach to repairing heap-
manipulating programs using constraint solving and deductive synthesis. It is in-
spired by recent advances in program synthesis using formal specification [40,42].
However, our usage of program synthesis only applies to buggy statements to
leave the repaired program with the least changes. The inputs of our approach
are a program C, its precondition P, its postcondition Q. The input program C
is first verified w.r.t. its specifications P and Q, using a separation-logic-based
verifier. If the input program does not satisfy its specifications, it is considered
buggy, and we start the repair process as follows.

Firstly, our approach localizes a list of suspicious statements using invalid
verification conditions in the verification step. Each suspicious statement is sub-
sequently replaced by a template patch TP, consequently making a template
program. The key idea is to find program statements of TP to make the template
program satisfy w.r.t. the specifications P and Q. Next, the verifier is used to
analyze the template program w.r.t. the specifications P and Q to generate con-
straints related to the specifications of the template patch TP. These constraints
are then solved using our constraint solving technique to discover the defini-
tion of the pre- and postcondition the template patch. In the next step, these
specifications are used to synthesize program statements of the template patch
TP. Then, synthesized program statements replace TP in the template program
to produce a candidate program. The candidate program is validated using the
verifier to finally return a repaired program.
Contributions. This paper makes the following contributions.

– We propose a novel approach to repairing buggy heap-manipulating programs.
To fix a buggy program, we first use constraint solving to infer the specifica-
tions of a patch. Then, from these inferred specifications, we use deductive
synthesis to synthesize program statements of the patch.

– We introduce a list of inference rules and an algorithm to formally infer the
specifications of a patch. We also present synthesis rules and an algorithm to
synthesize program statements of the patch using the inferred specifications.

– We implement the proposed approach in a prototype and evaluate it in a
benchmark of buggy heap-manipulating programs. Our tool can repair 223
out of 231 buggy programs and outperforms a state-of-the-art repair tool.

2

2 Motivation

1: typedef struct node {
2: struct node* prev;
3: struct node* next;} node;
4:
5: // dll(p, q, n) , (p=null ∧ n=0 ∧ emp)
6: // ∨ (∃r. p 7→{q, r} ∗ dll(r, p, n−1))
7:
8: void append(node* x, node* y)
9: // requires dll(x, a, n) ∗ dll(y, b,m) ∧ n>0

10: // ensures dll(x, a, n+m);
11: {
12: if (x->next == NULL) {
13: x->next = y;
14: if (y != NULL)
15: y->next = x;
16: } else append(x->next, y);
17: }

Fig. 1: A buggy dll-append program.

We illustrate our repair approach
using the program dll-append in
Fig. 1 which implements a buggy
version of a function that should
append two disjoint doubly-linked
lists (DLLs). The function append
takes as parameters two point-
ers of the structure node. Each
node is an element of a doubly-
linked list and stores pointers to
the previous and next elements of
the list. Following the definition of
the structure node (lines 1 - 3) is
a separation logic (SL) inductive
predicate dll, which recursively de-
scribes the shape of a symbolic-
heap fragment that stores a DLL
of length n. That is, a DLL is ei-
ther a NULL-pointer with the empty heap predicate emp and zero-length (line 5),
or a non-NULL pointer p to the head of the structure node (denoted via p7→{q, r})
such that the pointer q points to the “tail” of the DLL, with the recursively re-
peating dll-structure, and a length decremented by one (line 6).

The SL specifications for the function append are given by a precondition and
a postcondition that follow the syntax of requires and ensures, respectively.
The precondition specifies that x and y both are the heads of two disjoint DLLs
(the disjointness is enforced by the separating conjunction ∗), and the first DLL’s
length is positive (line 9). The postcondition expects that the result of append
is a DLL, starting at x, with a length equal to the sum of the lengths of the
initial lists (line 10). Here, the predicate definitions and program specifications
are written after the notation //.

An astute reader could have noticed the bug we have planted on line 15 of
Fig. 1: upon reaching the end of the x-headed DLL, the implementation does
incorrectly set the pointer y->next to point to x. Let us now present how this
mistake can be automatically discovered and fixed using our approach.

Firstly, the starting program state is the precondition dll(a, x, n)∗dll(y, b,m)∧
n>0. Then, we use separation logic rules to update a program state. When
the condition x->next == NULL at line 12 is true, the predicate dll(x, a, n) is
unfolded as ∃u. x 7→{a, u} ∧ n=1 ∧ u=null. Consequently, the program state
is ∃u. x7→{a, u} ∗ dll(y, b,m) ∧ n=1 ∧ u=null. Next, at line 13, we have the
following Hoare triple {∃u. x 7→{a, u}} x->next = y; {∃u. x 7→{a, y}}, leading
to the program state of ∃u. x7→{a, y} ∗ dll(y, b,m) ∧ n=1 ∧ u=null. This pro-
gram state could be simplified as x 7→{a, y} ∗ dll(y, b,m) ∧ n=1. Then, when
the condition y != NULL at line 14 is true, the predicate dll(y, b,m) is unfolded
as ∃v. y 7→{b, v} ∗ dll(v, y,m−1). As a result, the program state upon reaching

3

line 15 is ∃v. x 7→{a, y} ∗ y 7→{b, v} ∗ dll(v, y,m−1) ∧ n=1. After executing the
statement at line 15, the state is ∃v. x 7→{a, y} ∗ y 7→{b, x} ∗ dll(v, y,m−1)∧n=1.
Then, this state has to entail the postcondition, but the following entailment is
invalid: ∃v. x 7→{a, y} ∗ y 7→{b, x} ∗ dll(v, y,m−1) ∧ n=1 0 dll(x, a, n+m). Hence,
the function append is buggy.

Our approach repairs this buggy function by replacing a buggy statement
with a template patch. The idea is to infer the specifications the template patch.
Then, these specifications are used to synthesize program statements of the tem-
plate patch. We will elaborate on the details of our approach in the next sections.
We also use the motivating example to illustrate each step of our approach.

Note that the mutation-based approach [28] is not able to repair this motivat-
ing example. That approach relies on mutation operators, such as mutate, delete,
insert. However, there is no expression y->prev or statement y->prev = x avail-
able in the program dll-append to replace the buggy expression or statement
at line 15. Besides, as discussed in the Introduction (Sec. 1), the semi-automated
approach [50] requires a user to specify program states at various points to repair
this motivating example while our automated approach only requires a pair of
pre- and postcondition of the input program.

3 Overview of Program Repair using Deductive Synthesis

Verify program
(Sec. 3.1)

Create template patch
& generate constraints
(Sec. 3.3)

Synthesize patch
(Sec. 5)

Infer specification of
patch (Sec. 4)

Suspicious
statements

Program
+ Specs

Localize bugs
(Sec. 3.2)

Invalid
VCs

Repaired program

Validated

Succeed

Fail

VCs of
template
patch

Fail

No bug can be
repaired

Stop

Correct
program

Fig. 2: Our automated program repair workflow.

Fig. 2 presents an overview of our program repair approach. An input pro-
gram is first verified w.r.t. its specifications using a separation-logic-based verifier
(Sec. 3.1). Concretely, the HIP/SLEEK verifier [7] is used. If the input program
does not satisfy its specifications, it is considered buggy, and we start our repair
process. Firstly, our approach collects a list of suspicious statements and rank
them by their likelihood to trigger the bug (Sec. 3.2), based on the invalid ver-
ification conditions (VCs) and program traces generated during the verification
step. Secondly, each suspicious statement stmt, starting from the highest-ranked
one, is replaced by a template patch TPstmt, consequently creating a template
program (Sec. 3.3). This template patch TPstmt is accompanied by an initially

4

unknown precondition Ptp and a postcondition Qtp. Thirdly, the approach in-
vokes the verifier to analyze the template program to generate VCs related to
unknown predicates Ptp and Qtp. These VCs are subsequently solved by our
constraint solving technique to discover the definition of Ptp and Qtp (Sec. 4).
Then, these specifications Ptp and Qtp is used to synthesize program statements
of the template patch TPstmt (Sec. 5). If the synthesis step succeeds, a candidate
program is created by replacing the template TPstmt with the synthesized state-
ments. Finally, the candidate program is validated using the verifier to return a
repaired program. Note that HIP/SLEEK is able to prove program termination
[25,26]. Hence, the repaired program always terminates.

We will elaborate on the details of our framework in the rest of Sec. 3 and
Sections 4 and 5. We also formalize our repair algorithm in Sec. 6.

3.1 Program Verification using Separation Logic

Fig. 3 presents the syntax of the formula of our specification language. They
are formulae which follow the pre- and postcondition syntax (requires and
ensures) as introduced in the motivating example (Fig. 1). Our separation logic
fragment is called SLR and contains inductive heap predicates and linear arith-
metic. In this fragment, x, k, null denote a variable, an integer constant, and
a null pointer, respectively. A term t can be an arithmetic expression e or a
memory address expression a. Moreover, emp is the predicate describing the
empty memory, and x ι7→{t1, ..., tn} is a singleton predicate representing a single
data structure of type ι 3, pointed to by x, having n fields t1, ..., tn. Besides,
P(t1, ..., tn) is an inductive predicate modeling a recursive data structure (Def-
inition 1). These predicates compose a spatial formula Σ via the separating
conjunction operator ∗. Moreover, Π denotes a pure formula in the first-order
theory of equality and linear arithmetic. Finally, F is a symbolic-heap formula.

t ::= e | a e ::= k |x | − e | e1+e2 | e1−e2 | k·e a ::= null |x
Π ::= true | false | a1=a2 | a1 6=a2 | e1=e2 | e1 6=e2 | e1>e2 | e1≥e2 | e1<e2 | e1≤e2 |

¬Π |Π1∧Π2 |Π1∨Π2 |Π1→Π2 | ∀x.Π | ∃x.Π
Σ ::= emp |x ι7→{t1, ..., tn} |P(t1, ..., tn) |Σ1 ∗Σ2 F ::= Σ |Π |Σ ∧Π | ∃x.F

Fig. 3: Syntax of formulae in SLR.

Definition 1 (Inductive heap predicate). A system of k inductive heap
predicates Pi, with i=1, ..., k, is defined as follows, where each F ij is called a
definition case of Pi, and is denoted as F ij

def⇒ Pi:{
Pi(x

i
1, ..., x

i
ni
)

def
= F i1(x

i
1, ..., x

i
ni
) ∨ . . . ∨ F imi

(xi1, ..., x
i
ni
)
}k
i=1

Example 1 (Doubly linked-list). The doubly-linked list in Sec. 2 is an example
of an inductive heap predicate, which has one base case and one inductive case.

dll(p, q, n)
def
= (emp ∧ p=null ∧ n=0) ∨ ∃r. (p 7→{q, r} ∗ dll(r, p, n−1))

Fig. 4 presents the semantics of formulae in our separation logic SLR. Given
a set Var of variables, Sort of sorts, Val of values, Loc of memory addresses
3 For brevity, we omit ι when presenting examples.

5

(Loc ⊂ Val), a model of a formula consists of: a stackmodel s, which is a function
s: Var→ Val, and a heap model h, which is a partial function h: (Loc×Sort)⇀
Val+. In this model, JΠKs denotes the value of a pure formula Π under the
stack model s. Likewise, dom(h) is the domain of h; h # h′ shows that h and h′
have disjoint domains, i.e., dom(h)∩dom(h′)=∅; and h ◦h′ is the union of two
disjoint heap models h and h′. In addition, [f |x:y] is a function like f except
that it returns y for the input x. Regarding the semantics of an inductive heap
predicate, we follow the standard least fixed point semantics [1] by interpreting
an inductive predicate symbol P as the least prefixed point JPK of a monotone
operator constructed from its inductive definition.

s, h |= Π iff JΠKs= true and dom(h)=∅

s, h |= emp iff dom(h)=∅

s, h |= x
ι7→{x1, ..., xn} iff dom(h)= {s(x)} and h(s(x), ι) = (s(x1), ..., s(xn))

s, h |= P(x1, ..., xn) iff (h, Jx1Ks, ..., JxnKs) ∈ JPK

s, h |= Σ1 ∗Σ2 iff ∃h1, h2 : h1 #h2; h1 ◦h2 =h; s, h1 |=Σ1; s, h2 |=Σ2

s, h |= Σ ∧Π iff JΠKs= true and s, h |= Σ

s, h |= ∃x. F iff ∃v ∈ Val : [s |x:v], h |= F

Fig. 4: Semantics of formulae in SLR.

We follow the literature to use separation logic [5,19,44] to verify the func-
tional correctness of a program w.r.t. its specification. Separation logic follows
Hoare logic in using a triple {P} C {Q} to describe how the program state
is updated during the execution of the program C. Here, P and Q represents
the precondition and postcondition of the program C, respectively. The triple
{P} C {Q} expresses that given a starting program state of a program C satis-
fying P, if the program C executes and terminates, then the resulting program
state would satisfy Q. Hence, a program C is verified w.r.t. its specifications
P and Q if the triple {P} C {Q} holds. For instance, in Sec. 2, we have used
separation logic rules to update program states and found that the motivating
example in Fig. 1 is buggy because there exists an invalid entailment that con-
sequently makes the Hoare triple of the function append not valid. Technically,
we use the HIP/SLEEK verifier [7] to update program states. In this section, we
do not present separation logic rules due to page limit. Interested readers could
refer to [5,19,44].

3.2 Bug Localization

We localize suspicious statements and rank them according to their likelihood
to cause a bug by utilizing invalid VCs and program traces collected during
theg verification step (Sec. 3.1). Firstly, we collect a list of statements belonging
to buggy traces. Then, we rank these statements by (i) how many times they
appear in the buggy and correct traces and (ii) the distance from it to invalid VCs
using program positions. Concretely, a statement is ranked higher if it appears
more times in buggy traces and fewer times in the correct traces. Then, if two
statements are the same in the first measure, the second measure is used.

6

For example, the only buggy trace in the motivating example (Fig. 1) is
from taking the if branches of the two conditional statements. Hence, we collect
two statements x->next = y at line 13 and y->next = x at line 15. Moreover,
the statement x->next = y also appears in the correct trace when the condi-
tional expression y != NULL at line 14 is false. Therefore, the second state-
ment is more likely to cause the bug than the first one, consequently being
ranked higher. In summary, we localize two suspicious statements with their
corresponding ranking that are subsequently used as inputs of the next phase.

3.3 Template Patch Creation and Constraint Generation

In this phase, each suspicious statement is substituted by a template patch. This
replacement will generate a program that our approach regards as a template
program. Intuitively, the specifications, the pre- and postcondition, of the tem-
plate patch will be inferred and later used to synthesize program statements of
the template patch.

1: void TP(node* x, node* y);
2: // requires P(x, y, a, b, n,m)
3: // ensures Q(x, y, a, b, n,m);

4: void append(node* x, node* y)
5: // requires dll(x, a, n) ∗ dll(y, b,m) ∧ n>0
6: // ensures dll(x, a, n+m);
7: {
8: if (x->next == NULL) {
9: x->next = y;

10: if (y != NULL)
11: TP(x,y);
12: } else append(x->next, y);
13: }

Fig. 5: A template program.

For example, Fig. 5 shows a
template program created by re-
placing the highest-ranked sus-
picious statement y->next = x
with the template patch TP(x, y)
at line 11. The special state-
ment TP(x, y) is currently en-
coded as a function call with
parameters of all program vari-
ables available at that pro-
gram location. We also encode
the pre- and postcondition of
this function call using unknown
predicates P(x, y, a, b, n,m) and
Q(x, y, a, b, n,m), respectively (lines 2, 3). The parameters of these predicates
are parameters x, y of the template patch TP(x, y) and other variables a, b, n,
m in the precondition of append.

To generate constraints related to the specifications of a template patch, the
separation-logic-based verifier is called to verify the template program. All the
entailments related to the specifications (unknown predicates) of the template
patch are collected. The aim is to infer the definition of unknown predicates to
make all VCs correct, and then use inferred specifications to synthesize state-
ments of the template patch TP(x, y). For example, we collect all VCs containing
predicates P and Q in Fig. 5. These VCs are later used in Sec. 4 to infer the
definition of predicates P and Q. Finally, these specifications are subsequently
used in Sec. 5 to synthesize program statements of the template patch TP(x, y).

Example 2 (VCs of template patch). The entailments related to unknown pred-
icates P and Q of the template patch in Fig. 5 are as follows.

x7→{a, y} ∗ dll(y, b,m) ∧ n=1 ∧ y 6=null ` P(x, y, a, b, n,m) ∗ K(x, y, a, b, n,m)
Q(x, y, a, b, n,m) ∗ K(x, y, a, b, n,m) ` dll(x, a,m+n)

7

where the predicate K(x, y, a, b, n,m) is the frame formula [4] which is obtained
after analyzing the function call TP(x, y) with the precondition P(x, y, a, b, n,m).

4 Specification Inference

In Sec. 3.3, we explain how to create a template program and collect entailments
related to the specifications of the template patch. In this section, we will describe
how our approach solves theses entailments to discover the definition of the
specifications of the template patch.

4.1 Inference Rules

Our inference rules to discover the definition of unknown predicates are presented
in Fig. 6. Each inference rule has zero or more premises, a conclusion, and possi-
bly a side condition. A premise or a conclusion is of the form S; ∆, where ∆ is a
set of entailments, and S is the current discovered solution (a set of definitions of
unknown predicates). Furthermore, we write ∆, {F1 ` F2} to denote a new en-
tailment set obtained by extending ∆ with the entailment F1 ` F2. When F is a
symbolic-heap formula of the form ∃~x.(Σ∧Π), we define F ∗Σ′ , ∃~x.(Σ∗Σ′∧Π)
and F ∧Π ′ , ∃~x.(Σ ∧Π ∧Π ′), given that fv(Σ′)∩ ~x = ∅ and fv(Π ′)∩ ~x = ∅.
Here, fv(F) denotes the set of free variables in the formula F . We also write ~u=~v
to denote (u1=v1)∧ . . .∧ (un=vn), given that ~u , u1, . . . , un and ~v , v1, . . . , vn
are two variable lists of the same size. Finally, ~u # ~v indicates that the two lists
~u and ~v are disjoint, i.e., @w.(w∈ ~u ∧ w∈~v).

> ∆ = ∅
S; ∆

S; ∆
`π Π1→Π2

S; ∆, {Π1 ` Π2}
S; ∆⊥π Π1→false

S; ∆, {Σ1 ∧Π1 ` F2}
S; ∆⊥σ

S; ∆, {Σ1 ∗ u
ι17→{~t} ∗ uι27→{~r} ∧Π1 ` F2}

S; ∆, {F1 ∗ FP
1 (~t) ` F2}, ..., {F1 ∗ FP

n (~t) ` F2}
PL P(~t)

def
= F P

1 (~t)∨...∨F P
n (~t)

S; ∆, {F1 ∗ P(~t) ` F2}

S; ∆, {F1 ` ∃~x(F2 ∗ FP
i (~t))}PR F P

i (~t)
def⇒ P(~t)

S; ∆, {F1 ` ∃~x.(F2 ∗ P(~t))}
S; ∆, {F1[t/u] ` F2[t/u]}

=L
S; ∆, {F1 ∧ u=t ` F2}

S; ∆, {F1 ` ∃~x.(F2 ∧ u=v ∧ ~t=~r)}∗7→ fv(v, ~r) # ~x
S; ∆, {F1 ∗ u

ι7→{~t} ` ∃~x.(F2 ∗ v
ι7→{~r})}

S; ∆, {F1[u/v] ` F2}∃L u 6∈ fv(F1, F2)
S; ∆, {∃v.F1 ` F2}

S; ∆, {F1 ` ∃~x.(F2 ∧ ~t=~r)}∗P fv(~r) # ~x
S; ∆, {F1 ∗ P(~t) ` ∃~x.(F2 ∗ P(~r))}

S; ∆, {F1 ` ∃~x.F2[t/u]}∃R
S; ∆, {F1 ` ∃~x, u.(F2 ∧ u=t)}

S∪{U(~t) def
= F}; ∆[F/U(~t)], {F1 ` F2}

UL U 6∈F1, F2

S; ∆, {F1 ∗ U(~t) ` F2 ∗ F}
S; ∆, {F1 ` F2}

EL
S; ∆, {F1 ∗ emp ` F2}

S∪{U(~t) def
= F}; ∆[F/U(~t)], {F1 ` F2}

UR U 6∈F1, F2

S; ∆, {F1 ∗ F ` F2 ∗ U(~t)}
S; ∆, {F1 ` ∃~x.F2}

ER
S; ∆, {F1 ` ∃~x.(F2 ∗ emp)}

Fig. 6: Specification Inference Rules.

Most of our proposed rules are inspired by the standard entailment checking
rules in separation logic literature [47,48]. However, there are two main dif-
ferences. Firstly, they need to handle multiple entailments generated from the

8

verification of a temporarily patched program. Secondly, they also have to deal
with unknown heap predicates. We will explain the details of our rules as follows.
– Axiom rule >. This rule will return the current set of discovered specification

S if no entailment needs to be handled (∆ = ∅).
– Elimination rules ⊥π, ⊥σ, `π. These rules eliminate a valid entailment from

the entailment set ∆ in their conclusions. Here, we utilize three simple checks
for the validity of the candidate entailment when (i) it has a contradiction in
the antecedent (⊥π), (ii) or it contains overlaid singleton heaps (⊥σ), (iii) or
it is a pure entailment (`π). In the last case, an off-the-shelf prover like Z3
[10] will be invoked to prove the pure entailment.

– Normalization rules ∃L, ∃R, =L, EL, ER. These rules simplify an entailment in
∆ by either eliminating existentially quantified variables (∃L, ∃R), or removing
equalities (=L) or empty heap predicates (EL, ER) from the entailment.

– Unfolding rules PL, PR. These rules derive new entailments from a goal entail-
ment in ∆ by unfolding a heap predicate in its antecedent or its consequent.
Note that there is a slight difference between these two rules. When a heap
predicate in the antecedent is unfolded (PL), all derived entailments will be
added to ∆. In contrast, only one derived entailment will be added to ∆ when
a heap predicate in the consequent is unfolded (PR).

– Matching rules ∗7→, ∗P. These rules remove identical instances of singleton
heap predicates (∗7→) or inductive heap predicates (∗P) from two sides of
a goal entailment in ∆. Here, we ensure that these instances of predicates
are identical by adding equality constraints about their parameters into the
consequent of the derived entailment.

– Solving rules UL, UR. These rules discover the definition of an unknown heap
predicate U(~t) in a goal entailment of ∆ and update it to the solution set S.
More specifically, if U(~t) appears in the entailment’s antecedent, then the rule
UL chooses sub-formula of the consequent as the definition of U(~t). Similarly,
when U(~t) appears in the consequent, then the rule UR assigns U(~t) to a sub-
formula of the antecedent. In practice, these rules are often used when the
entailment contains U(~t) as its only heap predicate the antecedent (or the
consequent). Then, the rule UL (or UR) can simply choose the entire consequent
(or the entire antecedent) as the definition of U(~t).

4.2 Inference Algorithm

Fig. 7 presents our proof search procedure InferUnknPreds, which is implemented
recursively to infer specifications from the unknown entailment set. Its inputs
include a set ∆ of unknown entailments and a set S of the currently discovered
unknown heap predicates. This input pair correlates to a conclusion or a premise
of an inference rule. Its output is a set that contains the definitions of the un-
known heap predicates. When InferUnknPreds is invoked for the first time the
input S is set to an empty list (∅).

Given the predicate set S and the unknown entailment set ∆, the algorithm
InferUnknPreds considers two cases. The first case is when there exists an en-
tailment F ` G that has more than one unknown predicate in G and no un-
known predicate in F . Then, the definitions of unknown predicates in G are

9

Procedure: InferUnknPreds(S, ∆)

Input: ∆, S are sets of unknown entailments and discovered heap predicates.
Output: The solution set of unknown predicates.

1: if F ` G ∈ ∆ ∧ NumOfUnknPred(F) = 0 ∧ NumOfUnknPred(G) > 1 then
2: Ω ← DivideHeapFormula(F) . devide the spatial formula of F
3: for each (Ssub, ∆sub) in Ω do . One way of dividing
4: res ← InferUnknPreds(Ssub, ∆sub)
5: if res 6= ∅ then return res . Discover a solution
6: else
7: R ← FindInferRules(S, ∆) . find inference rules
8: for each R in R do
9: if R = > then return S . axiom rule

10: else . other inference rules
11: (S′, ∆′) ← GetPremise(R) . apply the chosen rule
12: res ← InferUnknPreds(S′, ∆′)
13: if res 6= ∅ then return res . discover a solution
14: return ∅ . fail to solve ∆

Fig. 7: Proof search algorithm for unknown entailments.

discovered by defining their spatial and pure formulae (line 2). Firstly, their
spatial formulae of unknown predicates are defined by dividing the spatial for-
mula of the antecedent F using the procedure DivideHeapFormula. For instance,
the first entailment in Example 2 has two unknown predicate P(x, y, a, b, n,m)
and K(x, y, a, b, n,m) in its consequent, and has no unknown predicate in its
antecedent. Hence, the pair (PS, KS) that contains the corresponding spatial for-
mulae of P(x, y, a, b, n,m) and K(x, y, a, b, n,m) could be either (emp, x 7→{a, y}∗
dll(y, b,m)), or (x 7→{a, y}, dll(y, b,m)), or pairs in the reverse order. Then, the
pure part of an unknown predicate is defined by using constraints in the an-
tecedent F such that the constraints are related to variables in the spatial formula
and the parameters of the predicate. For example, if we have PS

def
=x 7→{a, y}, then

we have the following definition: P(x, y, a, b, n,m)
def
= x 7→{a, y} ∧ n=1 ∧ y 6=null.

Each way of dividing the spatial formula of the antecedent F results in a pair
(Ssub, ∆sub) where the definitions of unknown predicates are added to the set S
to generate Ssub. Next, ∆sub is obtained by substituting unknown predicates by
their corresponding definitions in ∆. Then, the algorithm with new arguments
(Ssub, ∆sub) continues recursively (lines 4, 5).

In the second case, when there is no such entailment F ` G, the algorithm
first finds from all inference rules presented in Fig. 6 a set of rules R whose con-
clusion can be unified with the entailment set ∆ (line 7). Then InferUnknPreds
subsequently applies each of the selected rules in R to solve the unknown en-
tailment set ∆. In particular, if the selected rule R is an axiom rule >, the
procedure InferUnknPreds immediately returns the current solution set S, which
does not derive any new entailment set (line 9). Otherwise, it continues to solve

10

the new set of unknown entailments obtained from the premise of the rule R
(lines 11, 12) to discover the definitions of the unknown predicates (line 13).
Finally, InferUnknPreds returns an empty set (∅) if all selected rules fail to solve
the unknown entailment set ∆ (line 14).

In practice, to make the proof search more efficient, we also rank the discov-
ered inference rules in R by their likelihood to solve the unknown entailments.
These heuristics are as follows:
– The axiom rule (>) is the most important since it immediately returns the

solution set.
– The elimination rules (⊥σ,⊥π,`π) are the second most important since they

can remove valid entailments from the entailment set ∆.
– The normalization rules (∃L,∃R,EL,ER,=L) are the third most important since

they can simplify and make all the entailments more concise.
– Other rules (PL,PR, ∗7→, ∗P,PL,PR) generally have the same priority. However,

in several special cases, the priority of these rules change as follows:
• The rules ∗7→, ∗P, PL, PR have high priority if the following conditions are

satisfied. (i) The rule ∗7→ matches and removes singleton heap predicates of
the same root. (ii) The rule ∗P matches and removes identical instances of
inductive heap predicates. (iii) In the rule PL, F1 is a pure formula and F2

is emp. (iv) In the rule PR, F1 is emp and F2 is a pure formula.
• The rules ∗7→, ∗P have high priority when they match and remove heap

predicates that have some identical arguments.
• Finally, the rules PL, PR are more important if after unfolding, they can

introduce heap predicates that have some identical arguments, which can
be removed latter by the two rules ∗7→, ruleInferStarPred.

>
S∪{Q(x, y, a, b, n,m)

def
= dll(x, a,m+1)}; ∅

UL
S; Q(x, y, a, b, n,m) ∧ y 6=null ` dll(x, a,m+1)

=L
S; Q(x, y, a, b, n,m) ∧ n=1 ∧ y 6=null ` dll(x, a,m+n)

Fig. 8: A proof tree of applying specification inference rules.

Example 3 (Specification inference). We illustrate how to apply specification in-
ference rules to solve to the below unknown entailments, given in Example 2.

x 7→{a, y} ∗ dll(y, b,m) ∧ n=1 ∧ y 6=null ` P(x, y, a, b, n,m) ∗ K(x, y, a, b, n,m)
Q(x, y, a, b, n,m) ∗ K(x, y, a, b, n,m) ` dll(x, a,m+n)

The first entailment has two unknown predicates, namely P(x, y, a, b, n,m) and
K(x, y, a, b, n,m), in its consequent, and no unknown predicate in its antecedent.
Hence, the definitions of P(x, y, a, b, n,m) and K(x, y, a, b, n,m) are discovered
using DivideHeapFormula to partition the spatial part of the antecedent. One pos-
sible solution is that the spatial part of P(x, y, a, b, n,m) is x 7→{a, y}∗dll(y, b,m)
while the spatial part of K(x, y, a, b, n,m) is emp, as follows:

P(x, y, a, b, n,m)
def
= x 7→{a, y} ∗ dll(y, b,m) ∧ y 6=null

K(x, y, a, b, n,m)
def
= emp ∧ n=1 ∧ y 6=null

11

Now, we can replace K(x, y, a, b, n,m) in the second entailment with its actual
definition to obtain the following entailment.

Q(x, y, a, b, n,m) ∧ n=1 ∧ y 6=null ` dll(x, a,m+n)

The above entailment can be solved by our inference rules, as presented in the
proof tree in Fig. 8 where S contains the definition of predicates P(x, y, a, b, n,m)
and K(x, y, a, b, n,m).

5 Deductive Program Synthesis
In this section, we show how program statements of a template patch are syn-
thesized from the specifications inferred in Sec. 4. We first define the notion of
synthesis goal, then explain all synthesis rules, and finally introduce an algorithm
that synthesizes program statements using synthesis rules.

Γ ;V ; {F1[t/u]} {F2} | C
ExistsL t 6∈fv(V, F1, F2)

Γ ;V ; {∃u.F1} {F2} | C
Γ ;V ; {F1} {∃~z.F2[t/u]} | C

ExistsR
Γ ;V ; {F1} {∃~z,u.(F2 ∧ u=t)} | C

Γ ;V ; {Σ1 ∧Π1} {∃~z.(Σ2 ∧Π2)} | C
Frame7→ fv(u,~t)# ~z

Γ ;V ; {Σ1 ∗ u
ι7→{~t} ∧Π1} {∃~z.(Σ2 ∗ u

ι7→{~t} ∧Π2)} | C

Γ ;V ; {Σ1 ∧Π1} {∃~z.(Σ2 ∧Π2)} | C
FrameP fv(~t)# ~z

Γ ;V ; {Σ1 ∗ P(~t) ∧Π1} {∃~z.(Σ2 ∗ P(~t) ∧Π2)} | C

Γ ;V ; {F1 ∗ F iP (~t)} {F2} | C
UnfoldL

P(~t)
def
= F 1

P (~t) ∨ ... ∨ FnP (~t)
1≤i≤n,∀j 6=i, F1 ∗ F jP (~t) ≡ falseΓ ;V ; {F1 ∗ P(~t)} {F2} | C

Γ ;V ; {F1} {∃~z.(F2 ∗ FP (~t))} | C
UnfoldR FP (~t)

def⇒ P(~t)
Γ ;V ; {F1} {∃~z.(F2 ∗ P(~t))} | C

Γ ∪{{G1}fname(~u){G2}};V ∪{v}; {F1 ∗G2θ[v/res]} {F2} | C
Call

G1θ = F,
fv(~uθ) ∈ VΓ ∪{{G1}fname(~u){G2}};V ; {F1 ∗ F} {F2} | typ v = fname(~uθ); C

Γ ;V ∪ {u}; {F1 ∧ u=e} {∃~z.(F2 ∧ u=e)} | C
Assign

u 6∈ ~z, u 6∈ fv(F1),
fv(e) ⊆ VΓ ;V ∪ {u}; {F1} {∃~z.(F2 ∧ u=e)} | u = e; C

Skip F1 `F2
Γ ;V ; {F1} {F2} | skip

Ret
F1 ` ∃~z.F2,
fv(e) ⊆ VΓ ;V ; {F1} {∃~z.(F2 ∧ res=e)} | return e;

Γ ;V ∪ {v}; {Σ1 ∗u
ι7→(fld : t)∧Π1 ∧ v=t} {F2} | C

Read
u∈V,
v 6∈VΓ ;V ; {Σ1 ∗ u

ι7→(fld : t) ∧Π1} {F2} | typ v = u->fld; C

Γ ;V ; {F1 ∗ u
ι7→(fld : t)} {F2 ∗ u

ι7→(fld : t)} | C
Write

fv(u, t)⊆V,
r 6=tΓ ;V ; {F1 ∗ u

ι7→(fld : r)} {F2 ∗ u
ι7→(fld : t)} | u->fld = t; C

Γ ;V ∪ {u}; {Σ1 ∗ u
ι7→{~v} ∧Π1} {Σ2 ∗ u

ι7→{~t} ∧Π2} | C
Alloc

u 6∈ fv(V,Σ1)
~v are fresh
~t ⊆ VΓ ;V ; {Σ1 ∧Π1} {Σ2 ∗ u

ι7→{~t} ∧Π2} | struct ι u = malloc(sizeof(struct ι)); C

Γ ;V ; {F1 ∧Π1} {∃~z.(Σ2 ∧Π2)} | C
Free

u 6∈ fv(Σ2)
u,~t ⊆ VΓ ;V ; {F1 ∗ u 7→{~t} ∧Π1} {∃~z.(Σ2 ∧Π2)} | free(u); C

Fig. 9: Deductive Synthesis Rules.

A synthesis goal is written as Γ ;V ; {F1} {F2} | C, where Γ is a list of de-
clared functions that supports to synthesize function call statements, V consists
of all available variables that could be used during the synthesis algorithm, F1

12

is a precondition, F2 is a postcondition, and C is a list of program statements
that will be synthesized. Hence, solving a synthesis goal is equivalent to finding
program statements C such that the Hoare triple {F1} C {F2} holds.
5.1 Synthesis Rules
Fig. 9 presents our synthesis rules to synthesize program statements. A synthesis
rule contains zero or more premises, a conclusion, and possible side conditions. A
premise or a conclusion of a synthesis rule is a synthesis goal. Here, typ, fld, and
fname indicate a variable type, a field of a data structure, and a function name,
respectively. Besides, res is a keyword in our specification language to indicate
the returned result of a function. Other notations are introduced previously in
Sec. 4.1 and Sec. 3.1. All synthesis rules are described as follows.
– Simplification rules ExistsL and ExistsR. These rules simplify a synthesis goal

by removing an existential variable in its precondition (ExistsL) or its postcon-
dition (ExistsR).

– Frame rules Frame 7→ and FrameP. These rules remove an identical singleton
heap predicate (Frame 7→) or inductive heap predicate (FrameP) from the pre-
and postcondition of a synthesis goal.

– Unfolding rules UnfoldL and UnfoldR. These rules produce a new synthesis goal
by unfolding an inductive heap predicate in the pre- or postcondition of a syn-
thesis goal. When an inductive heap predicate is unfolded in the precondition
(UnfoldL), the side conditions ensure that only one definition case F iP (~t) of
P(~t) is satisfiable. In contrast, unfolding an inductive heap predicate P(~t) in
the postcondition (UnfoldR) creates multiple subgoals, but solving the current
synthesis goal requires only one subgoal to succeed.

– Rule Call. This rule invokes a function call fname(~u) which has the specifi-
cation of {G1}fname(~u){G2} when all chosen input arguments ~uθ satisfy the
specification of its corresponding parameters. Here, θ is a substitution of ar-
guments to the parameters ~u of the function, i.e., replacing the function’s
formal parameters with the corresponding actual arguments. Then, updating
the precondition of the synthesis goal is similar to update a program state in
formal verification when a function call fname(~uθ) is encountered.

– Rule Assign. The rule Assign assigns a value e to a variable u that is in the list V
(u ∈ V) when a constraint u=e appears in the postcondition but the variable
u is not assigned any value in the precondition (u 6∈ fv(F1)). Consequently, an
assignment statement u = e; is generated.

– Rules Skip and Ret. The rule Skip is applicable when there exists a valid
entailment F1 ` F2. It also marks that a synthesis goal is solved by producing
a skip statement. Meanwhile, the rule Ret generates a statement return e;.
It is similar to combining the rule Assign (with u is res) and the rule Skip.
These rules have no premises, meaning that they are terminating rules.

– Rules Read and Write. The rule Read assigns the value of a field of a heap
variable to a new variable. For instance, if a statement append(x->next, y)
needs to be synthesized when repairing a buggy dll-append program, Read is
executed to create the statement node* nx = x->next;. Then, Call is used to

13

synthesize the statement append(nx, y);. Meanwhile, the rule Write assigns
a new value to a field of a heap variable is if the values of the field of the
variable in the pre- and postcondition differ (see Example 4).

– Rules Alloc and Free. The rule Alloc allocates a new variable u of the data
structure ι if all arguments ~t are in the list V . This rule is called when a new
heap variable u appears in the spatial formula of the postcondition but not
the precondition (u 6∈ fv(Σ1)). On the other hand, the rule Free deallocates a
heap variable u if it is in the spatial formula of the precondition but not in
the spatial formula of the postcondition.

5.2 Synthesis Algorithm
Fig. 10 shows our synthesis algorithm SynthesizeStmts. Given a list of declared
functions Γ , a list of available variables V , a precondition F1, and a postcondition
F2, the algorithm SynthesizeStmts aims to produce a program statement C that
solves the synthesis goal Γ ;V ; {F1} {F2} | C. Hence, the program statement C
is the patch that will replace the template patch to create a candidate program.

Algorithm: SynthesizeStmts(Γ, V, F1, F2)

Input: A list of function declarations Γ , a list of available variables V , a
precondition F1, and a postcondition F2.
Output: A list of synthesized statements, or Fail if no statement is synthesized.

1: R ← FindSynRules(Γ, V, F1, F2) . find applicable rules
2: for each rule R in R do
3: if R ∈ {Skip,Ret} then return DeriveStmt(R) . a terminating rule
4: else if R ∈ {ExistsL,ExistsR,Frame 7→,FrameP,UnfoldL,UnfoldR} then
5: (Γ ′, V ′, F ′

1, F
′
2) ← DeriveNewGoal(R) . a normalization rule

6: return SynthesizeStmts(Γ, V ′, F ′
1, F

′
2)

7: else . other rules
8: (Γ ′, V ′, F ′

1, F
′
2), stmt ← DeriveNewGoalAndStmt(R)

9: res ← SynthesizeStmts(Γ ′, V ′, F ′
1, F

′
2)

10: if res 6= Fail then return AppendStmts(stmt, res) . found a solution
11: return Fail . fail to synthesize

Fig. 10: The SynthesizeStmts algorithm.

The algorithm SynthesizeStmts first finds from all synthesis rules presented in
Sec. 5.1 a list of rulesR that are applicable to the current tuple (Γ, V, F1, F2) (line
1). If there exists a terminating rule (Skip or Ret), then SynthesizeStmts returns a
skip statement (Skip) or a return statement (Ret) (line 3). If a normalization rule
is selected, then SynthesizeStmts will immediately apply it to derive a new goal
and continue the synthesis (lines 4–6). For other synthesis rules, SynthesizeStmts
subsequently executes each of them to derive both a new goal (Γ ′, V ′, F ′

1, F
′
2) and

a program statement stmt (line 8). Our algorithm also checks if the rule Call is
executed on a smaller sub-heap of the precondition F1 that consequently ensures
termination of a patched program. The algorithm will continue the synthesis
process on the new goal (line 9) and will append the previously synthesized

14

statement stmt on the new result res to return all synthesized statements (line
10). Besides, it also returns Fail if all selected rules fail to synthesize program
statements from the current inputs (line 11).

In practice, we also ranks synthesis rules collected by FindSynRules to make
the algorithm SynthesizeStmts more effective. Firstly, two terminating rules Skip
and Ret are the most important since they immediately return a list of synthe-
sized statements. Then, the rules ExistsL, ExistsR, UnfoldL are the second most
important rules because they simplify the current synthesis goal and generate a
more concise synthesis goal. Finally, other synthesis rules are ranked equally.

Γ ;V ; {x 7→{a, y} ∗ y 7→{x, t}} {x 7→{a, y} ∗ y 7→{x, t}} | C’ C’ = skip
Skip

Γ ;V ; {x 7→{a, y} ∗ y 7→{x, t}} {x 7→{a, y} ∗ y 7→{x, t}} | C
C = y-> prev = x; C’

Write
Γ ;V ; {x7→{a, y} ∗ y 7→{b, t}} {x 7→{a, y} ∗ y 7→{x, t}} | C

FrameP
Γ ;V ; {x7→{a, y} ∗ y 7→{b, t} ∗ dll(t, y,m−1)} {∃k, h. x 7→{a, k} ∗ k 7→{x, h} ∗ dll(h, k,m−1)} | C

UnfoldR
Γ ;V ; {x 7→{a, y} ∗ y 7→{b, t} ∗ dll(t, y,m−1)} {∃k. x7→{a, k} ∗ dll(k, x,m)} | C

UnfoldR
Γ ;V ; { x 7→{a, y} ∗ y 7→{b, t} ∗ dll(t, y,m−1)} {dll(x, a,m+1)} | C

ExistsL
Γ ;V ; {∃t. x7→{a, y} ∗ y 7→{b, t} ∗ dll(t, y,m−1)} {dll(x, a,m+1)} | C

UnfoldL
Γ ;V ; {x7→{a, y} ∗ dll(y, b,m)∧y 6=null} {dll(x, a,m+1)} | C

Fig. 11: Synthesis rules are applied to specifications inferred in Example 3.

Example 4 (The patch to repair the motivating example). Fig. 11 explains how
our synthesis algorithm applies synthesis rules to synthesize a program statement
from the specifications inferred in Example 3. Here, Γ contains a declaration of
function append while the list V is {x, y}. The algorithm SynthesizeStmts first
uses the rule UnfoldL to remove the constraint y 6=null from the precondition.
Next, the rule ExistsL is used to remove the existential variable t from the pre-
condition. Then, the postcondition is unfolded twice using the rule UnfoldR to
have a predicate dll of length m−1 like in the precondition. Next, the predicate
dll of length m−1 is removed from both the pre- and postcondition using the
rule FrameP. Finally, the field prev of the variable y is updated according to the
rule Write to terminate the synthesis algorithm with the rule Skip. Therefore, a
program statement y->prev = x is synthesized. This statement will replace the
template patch TP(x,y) at line 11 in Fig. 5 to produce a candidate program. Fi-
nally, the candidate program is validated w.r.t. the specifications of the function
append and then returned as the repaired program of the motivating example.

6 Repair Algorithm
We formally introduce the algorithm Repair in Fig. 12. The inputs of the al-
gorithm include a program C, its precondition P, its postcondition Q, and an
environment variable Γ containing all declared functions that can be invoked
during the repair process.

The algorithm first verifies if program C is correct against its specifications
(line 1). If the verification fails, then C is considered buggy. In this case, all the
invalid VCs generated during the verification step are collected (line 2). Next,
the algorithm Repair utilizes these VCs to localize a list of suspicious statements

15

S (line 3). It also ranks these suspicious statements according to their likelihood
to cause the bug. Then, it attempts to repair each suspicious statement in S,
starting from the highest-ranked one (lines 4–14).

More specifically, the algorithm creates a template program Cstmt for each
suspicious statement stmt (line 5): it replaces that statement with a template
patch TPstmt, which is specified by a pair of unknown pre- and postcondition Ptp,
Qtp. Then, Repair verifies the template patched program to collect all VCs related
to Ptp, Qtp (line 6). These VCs will be solved by the algorithm InferUnknPreds
(described in Sec. 4.2) to infer the actual definition of Ptp, Qtp (line 7). If this
inference succeeds (lines 8, 9), the inferred pre- and postcondition Ptp, Qtp

will be used to synthesize correct program statements of the template patch
(line 11), by using the algorithm SynthesizeStmts as explained in Sec. 5.2. When
SynthesizeStmts can synthesize a list of program statements, our algorithm Repair
will replace the template patch TPstmt with synthesized statements to create a
candidate program C (line 13). If C can be validated by the procedure Verify,
it will be returned as the repaired program (line 14). Otherwise, the algorithm
Repair returns Fail if it is unable to fix the input buggy program (line 15). It also
returns None if the input program C is correct w.r.t. its specifications (line 16).

Algorithm: Repair(Γ,P, C,Q)
Input: Γ is a list of declared functions that can be used, and C, P, Q are the
program to be repaired, and its corresponding pre- and postcondition.
Output: None if the Hoare triple {P} C {Q} holds, C if C is buggy and C is the
repaired solution, or Fail if C is buggy but cannot be repaired.

1: if Verify(P, C,Q) = Fail then . C is buggy
2: VCs ← GetInvalidVCs(P, C,Q)
3: S ← LocalizeBuggyStmts(C,VCs) . suspicious statements
4: for each stmt in S do
5: (Cstmt, TPstmt,Ptp,Qtp) ← CreateTemplatePatchedProg(C, stmt)
6: VCs′ ← GetVCs(Cstmt,P,Q) . collect entailments
7: D ← InferUnknPreds(∅,VCs′) . specification inference
8: if D 6= ∅ then
9: (Ptp,Qtp) ← GetPredDefn(D)

10: V ← GetAvailableVars(Cstmt)
11: TPstmt ← SynthesizeStmts(Γ, V,Ptp,Qtp) . deductive synthesis
12: if TPstmt 6= Fail then
13: C ← GetCandidateProg(Cstmt, TPstmt)
14: if Verify(P, C,Q) = Valid then return C . discover a patch
15: return Fail . fail to repair
16: else return None . C is correct

Fig. 12: The Repair algorithm.

We claim that our program repair algorithm in Fig. 12 is sound. We formally
state that soundness in the following Theorem 1.

16

Theorem 1 (Soundness). Given a program C, a precondition P, and a post-
condition Q, if the Hoare triple {P} C {Q} does not holds, and the algorithm
Repair returns a program C, then the Hoare triple {P} C {Q} holds.

Proof. In our repair algorithm Repair (Fig. 12), an input program C is buggy
when Verify(P, C,Q) = Fail or the Hoare triple {P} C {Q} does not hold. Then,
if a candidate program C is produced (line 13), the algorithm Repair always
verifies C w.r.t. the precondition P and the postcondition Q before returning C
(line 14). Hence, if {P} C {Q} does not hold and the algorithm Repair returns a
program C, the Hoare triple {P} C {Q} holds.

7 Evaluation
We implemented our prototype tool, called NEM, on top of the HIP/SLEEK
verification framework [6,7,38]. The specification inference in Sec. 4 was imple-
mented on top of the Songbird prover [47,48]. Because our approach currently
does not synthesize conditional statements, we apply mutation operators, e.g.,
changing from x->next != NULL to x->prev != NULL, to repair buggy condi-
tional expressions of the conditional statements. We conducted experiments on a
computer with CPU Intel® CoreTM i7-6700 (3.4GHz), 8GB RAM, and Ubuntu
16.04 LTS. The details of our tool NEM and experiments are available online at
https://nem-repair-tool.github.io/.

Table 1: Evaluation of NEM and a mutation-based tool [28] on repairing buggy heap-
manipulating programs. Programs denoted with * are from [50].

Program #LoC #Buggy
NEM Mutation-Based Tool [28]

#Repaired Avg.Time (s) #Repaired Avg.Time (s)
sll-length 12 11 11 3.31 0 -
sll-copy 13 9 9 5.4 0 -
sll-append 11 18 18 5.84 1 2.13
sll-insert∗ 11 11 11 4.86 1 2.1
sll-delete∗ 13 17 17 5.32 0 -
dll-length 12 12 12 3.7 0 -
dll-append 16 20 16 10.12 1 5.36
dll-insert 12 11 11 4.58 1 2.11
dll-delete 20 20 20 15.72 0 -
srtll-insert∗ 19 20 20 18.35 2 6.13
tree-size 13 16 16 9.46 0 -
tree-height 16 20 20 13.67 0 -
avl-size 17 16 16 32.63 0 -
bst-size 13 16 16 11.46 0 -
bst-height 16 14 10 40.54 0 -
Summary 231 223 12.59 6 3.99

To evaluate our repair approach, we first selected a list of heap-manipulating
programs written in a C-like language that was formally defined in [7]. These
programs include algorithms of various data structures, such as singly-linked list

17

https://nem-repair-tool.github.io/

(sll), doubly-linked list (dll), sorted linked list (srtll), binary tree (tree), binary
search tree (bst), and AVL tree (avl). They include popular algorithms like insert,
append, delete, copy for linked-lists. Some of these programs are taken from the
benchmark used in [50] that are annotated accordingly. Note that our programs
are tail-recursive while these in [50] use while loops.

To demonstrate the effectiveness of our method, we compared our tool with
a state-of-the-art repair tool [28]. This tool uses genetic programming operators,
e.g., mutate, delete, insert, to generate candidate programs, and then verifies
these programs using a verifier. Both program repair tools verify and repair
programs according to their provided specifications. Moreover, these two tools
also use the HIP/SLEEK verifier to verify input programs and validate candidate
programs. Each tool is configured to repair a buggy program within a timeout of
300 seconds. Regarding our tool NEM, we set both the timeouts of specification
inference (Sec. 4) and deductive synthesis (Sec. 5) to 20 seconds. Besides, we
did not include the semi-automated program repair tool Wolverine [50] since we
could not obtain the implementation.

We followed a previous approach [50] in building a bug injection tool. This
tool modifies program statements of a verified program to introduce errors at
various program locations. Our tool modifies directly on the input program and
generates readable buggy versions that are close to the input program. In con-
trast, the bug injection tool in Wolverine creates bugs in the intermediate repre-
sentation code, consequently not enabling users to compare the buggy versions
with the original correct program. Our bug injection tool currently modifies one
statement or two statements in different branches of conditional statements. We
also limit the maximum buggy versions of each program to 20.

Table 1 shows the results of running our prototype NEM and the mutation-
based tool on the chosen benchmark. For each program, # LoC is the number
of lines of code while # Buggy is the number of buggy versions created by the
bug injection tool. Regarding the last 4 columns, we compared two evaluated
tools in the number of buggy versions repaired, and the average time one tool
needs to fix a buggy version. The results show that our tool outperforms the
mutation-based one in the number of buggy programs repaired. Concretely, NEM
was able to repair 223 buggy versions out of a total of 231 cases while the
mutation-based tool only generated 6 correct patches. It is also noteworthy that
NEM could handle buggy cases in all 15 programs. On the other hand, the
mutation-based tool only gave correct patches for 5/15 programs. This is because
our approach synthesizes patch candidates based on constraints collected from
program semantics. Meanwhile, the mutation-based approach only uses a list of
genetic programming operators, such as mutate, delete, insert, which limits the
pattern of candidate patches.

Regarding the running time, our tool NEM needed 12.59 seconds on average
to generate one correct patch while the mutation-based approach requires 3.99
seconds on average. This is because our approach of using specification inference
and deductive synthesis is more expensive than mutation operators. However, it
is much more effective when it can repair substantially more buggy programs.

18

There are 8 buggy versions of the 2 programs dll-append and bst-height that
NEM could not repair. This is because the constraints collected when repairing
these programs are highly complicated that they could not be solved by the
current proof search heuristics of our constraint solver. This is a limitation of
our work and we aim to resolve it in the future.

8 Related Work
Similar to our approach, a mutation-based approach [28] also aims to enhance
APR with deductive verification. Technically, this method requires an iteration
of (i) generating a patch by employing code mutation operators via GenProg [53]
and (ii) verifying the patched program via HIP/SLEEK [7]. In contrast, we use
specification inference and deductive synthesis to generate program statements
of a patch. Hence, our approach is more effective than the mutation-based ap-
proach [28] in repairing buggy heap-manipulating programs as shown in Sec. 7.

The initial approaches that repair buggy heap-manipulating programs [11,12]
rely on first-order logic formulae for specifications. However, these approaches
are limited to detecting and fixing violations of user-provided data structure
invariants. Meanwhile, our approach handles a broader class of errors, manifested
as violations of specifications for arbitrary programs. The work [13] uses an input
program and its specifications to generate constraints, which are then solved
using the Alloy solver [20]. The obtained solutions are then translated into a
repaired program. However, the repair procedure in [13] is restricted to a specific
number of templates. In contrast, our approach uses a fully-fledged deductive
synthesis framework, thus, allowing for fixing a larger class of bugs.

Recently, the tool FootPatch [49] relies on the Infer analysis tool [2,3] to de-
tect errors and emit fixes for them. While also grounded in separation logic, this
approach is less general than ours, as it only considers a fixed number of classes
of bugs. However, it is more scalable thanks to the ability of Infer to detect unsafe
memory accesses in large codebases without any user input. Likewise, Logozzo
and Ball [31] use abstract interpretation [9] as a way to detect and fix mistakes in
programs, but only for a limited number of issues that are captured by the em-
ployed analyzer. Similar to our approach, Maple [39] uses program specifications
to detect bugs and validate candidate patches in numerical programs.

Our idea of generating correct-by-construction patches is similar to synthe-
sizing programs from Hoare-style specifications [8,40,42]. However, it is applied
in the context of program repair where the minimum number of statements is
synthesized, leading to patches that are close to the original programs. Similar
to our approach, deductive program repair [22] fixes buggy functional programs
using the specifications from both symbolically executed tests and pre/postcon-
ditions and verifying the resulting program using the Leon tool [23].

Traditional APR approaches rely on test suites in checking the correct-
ness of programs. Two main approaches of test-based APR are heuristic repair
and constraint-based repair [30]. The heuristic repair identifies the bugs and
the patches in the programs employing the insights that similar code patterns
might be observed in sufficiently large codebases [16,43] while the constraint-
based repair uses the provided test suite to infer symbolic constraints, and then

19

solves those constraints to generate a patch [32,35,36,37,54]. Test-based APR ap-
proaches have been previously applied for fixing bugs in programs with pointers.
For instance, a recent approach [50] involves a programmer in the debug-repair
process to define correct program states at run-time. In contrast, our approach
repairs buggy programs without the involvement of programmers.

9 Limitation and Future Work
We now discuss the limitations of our current approach and our plans to ad-
dress them. Firstly, our approach mainly focuses on fixing program statements.
Consequently, it may remove correct expressions, e.g., the left-hand side of an
assignment or a parameter of a function call. This is because it aims to ease the
bug localization step in limiting the number of suspicious statements as the num-
ber of suspicious expressions would be considerably larger than that of suspicious
statements. In the future, we plan to add expression-level program repair by ex-
pressing correct expressions as holes in program sketches as in ImpSynt [42]. This
method could also enhance our approach in repairing multiple locations as our
approach currently only repairs one buggy statement or two buggy statements
in different branches of a conditional statement.

Secondly, our approach does not handle omission errors. The debug-and-
repair approach [50] can repair these cases by adding program states at various
program points. Likewise, we can improve the capabilities of our repair method
by inserting template patches at various program locations, and then synthesiz-
ing program statements of these patches. Thirdly, our approach could not repair
buggy programs using the structure list segment in their specifications, e.g., the
program schedule3 in the benchmark of [28]. Our early inspections indicate that
these cases need lemmas in synthesizing program statements. Therefore, we aim
to incorporate lemma synthesis, e.g., [48], to our repair framework. Fourthly, the
buggy programs in our benchmark (Sec. 7) are produced using a bug injection
tool. Therefore, we plan to evaluate our approach on student submissions in
programming courses, similar to previous approaches [14,18,45,51].

Furthermore, we aim to ease the requirement of providing program specifi-
cations from users. To do that, we could either leverage static analyzers that do
not require program specifications, e.g., Infer [2,3], or incorporate specification
inference techniques, such as [24,27], to automatically infer program specifica-
tions. Finally, as discussed in Sec. 7, we plan to improve our constraint-solving
technique to handle buggy programs that our approach currently fails to repair.

10 Conclusion
We have proposed a novel approach to fix buggy heap-manipulating programs. If
a program is found buggy, we first encode program statements to fix this program
in a template patch. Then, the specifications of the template patch are inferred
using a constraint solving technique. Finally, from the inferred specifications, we
use deductive synthesis to synthesize program statements of the template patch.
The experimental results showed that our approach substantially outperformed
a mutation-based approach in repairing buggy heap-manipulating programs.

20

Acknowledgments. We are grateful to the anonymous reviewers for their
valuable and detailed comments. The first author would like to thank Cristina
David for encouraging discussions, and Xuan-Bach D. Le for sharing the imple-
mentation of [28]. Thanh-Toan Nguyen and Wei-Ngan Chin are supported by the
Singapore NRF grant R-252-007-A50-281. Ilya Sergey’s work has been supported
by the grant of Singapore NRF National Satellite of Excellence in Trustworthy
Software Systems (NSoE-TSS) and by Crystal Centre at NUS School of Com-
puting. Quang-Trung Ta is supported by the grant of the Singapore NRF under
its Emerging Areas Research Projects (EARP) Funding Initiative in Singapore
Blockchain Innovation Programme (SBIP).

References

1. James Brotherston and Alex Simpson. Sequent calculi for induction and infinite
descent. Journal of Logic and Computation, 21(6):1177–1216, 2011.

2. Cristiano Calcagno and Dino Distefano. Infer: An automatic program verifier for
memory safety of C programs. In NASA International Symposium on Formal
Methods (NFM), pages 459–465, 2011.

3. Cristiano Calcagno, Dino Distefano, Jérémy Dubreil, Dominik Gabi, Pieter
Hooimeijer, Martino Luca, Peter W. O’Hearn, Irene Papakonstantinou, Jim Pur-
brick, and Dulma Rodriguez. Moving fast with software verification. In NASA
International Symposium on Formal Methods (NFM), pages 3–11, 2015.

4. Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok Yang.
Compositional shape analysis by means of bi-abduction. Journal of the ACM,
58(6):26:1–26:66, 2011.

5. Arthur Charguéraud. Separation logic for sequential programs (functional pearl).
In International Conference on Functional Programming (ICFP), pages 116:1–
116:34, 2020.

6. Wei-Ngan Chin, Cristina David, Huu Hai Nguyen, and Shengchao Qin. Enhancing
modular OO verification with separation logic. In Symposium on Principles of
Programming Languages (POPL), pages 87–99, 2008.

7. Wei-Ngan Chin, Cristina David, Huu Hai Nguyen, and Shengchao Qin. Automated
verification of shape, size and bag properties via user-defined predicates in Sepa-
ration Logic. Science of Computer Programming (SCP), 77(9):1006–1036, 2012.

8. Andreea Costea, Amy Zhu, Nadia Polikarpova, and Ilya Sergey. Concise read-
only specifications for better synthesis of programs with pointers. In European
Symposium on Programming (ESOP), pages 141–168, 2020.

9. Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation of fixpoints.
In Symposium on Principles of Programming Languages (POPL), pages 238–252,
1977.

10. Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In
International Conference on Tools and Algorithms for Construction and Analysis
of Systems (TACAS), pages 337–340, 2008.

11. Brian Demsky and Martin C. Rinard. Automatic detection and repair of errors
in data structures. In International Conference on Object Oriented Programming
Systems Languages & Applications (OOPSLA), pages 78–95, 2003.

21

12. Brian Demsky and Martin C. Rinard. Data structure repair using goal-directed
reasoning. In International Conference on Software Engineering (ICSE), pages
176–185, 2005.

13. Divya Gopinath, Muhammad Zubair Malik, and Sarfraz Khurshid. Specification-
based program repair using SAT. In International Conference on Tools and Algo-
rithms for Construction and Analysis of Systems (TACAS), pages 173–188, 2011.

14. Sumit Gulwani, Ivan Radicek, and Florian Zuleger. Automated clustering and
program repair for introductory programming assignments. In Conference on Pro-
gramming Language Design and Implementation (PLDI), pages 465–480, 2018.

15. Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish K. Shevade. Deepfix: Fixing
common C language errors by deep learning. In AAAI Conference on Artificial
Intelligence (AAAI), pages 1345–1351, 2017.

16. Mark Harman. Automated patching techniques: the fix is in: technical perspective.
Communications of the ACM, 53(5):108, 2010.

17. Seongjoon Hong, Junhee Lee, Jeongsoo Lee, and Hakjoo Oh. Saver: Scalable,
precise, and safe memory-error repair. In International Conference on Software
Engineering (ICSE), 2020.

18. Yang Hu, Umair Z. Ahmed, Sergey Mechtaev, Ben Leong, and Abhik Roychoud-
hury. Re-factoring based program repair applied to programming assignments. In
International Conference on Automated Software Engineering (ASE), pages 388–
398, 2019.

19. Samin S. Ishtiaq and Peter W. O’Hearn. BI as an assertion language for mutable
data structures. In Symposium on Principles of Programming Languages (POPL),
pages 14–26, 2001.

20. Daniel Jackson and Mandana Vaziri. Finding bugs with a constraint solver. In
International Symposium on Software Testing and Analysis (ISSTA), pages 14–25,
2000.

21. Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. Automatic patch
generation learned from human-written patches. In International Conference on
Software Engineering (ICSE), pages 802–811, 2013.

22. Etienne Kneuss, Manos Koukoutos, and Viktor Kuncak. Deductive program repair.
In International Conference on Computer Aided Verification (CAV), pages 217–
233, 2015.

23. Etienne Kneuss, Ivan Kuraj, Viktor Kuncak, and Philippe Suter. Synthesis modulo
recursive functions. In International Conference on Object Oriented Programming
Systems Languages & Applications (OOPSLA), pages 407–426, 2013.

24. Quang Loc Le, Cristian Gherghina, Shengchao Qin, and Wei-Ngan Chin. Shape
analysis via second-order bi-abduction. In International Conference on Computer
Aided Verification (CAV), pages 52–68, 2014.

25. Ton Chanh Le, Cristian Gherghina, Aquinas Hobor, and Wei-Ngan Chin. A
resource-based logic for termination and non-termination proofs. In International
Conference on Formal Engineering Methods (ICFEM), pages 267–283, 2014.

26. Ton Chanh Le, Shengchao Qin, and Wei-Ngan Chin. Termination and non-
termination specification inference. In Conference on Programming Language De-
sign and Implementation (PLDI), pages 489–498, 2015.

27. Ton Chanh Le, Guolong Zheng, and ThanhVu Nguyen. SLING: using dynamic
analysis to infer program invariants in separation logic. In Conference on Pro-
gramming Language Design and Implementation (PLDI), pages 788–801, 2019.

28. Xuan-Bach D. Le, Quang Loc Le, David Lo, and Claire Le Goues. Enhancing au-
tomated program repair with deductive verification. In IEEE International Con-
ference on Software Maintenance and Evolution (ICSME), 2016.

22

29. Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. Gen-
prog: A generic method for automatic software repair. IEEE Transactions on
Software Engineering (TSE), 38(1):54–72, 2012.

30. Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. Automated Program
Repair. Communications of the ACM, 2019.

31. Francesco Logozzo and Thomas Ball. Modular and verified automatic program re-
pair. In International Conference on Object Oriented Programming Systems Lan-
guages & Applications (OOPSLA), pages 133–146, 2012.

32. Fan Long and Martin Rinard. Staged program repair with condition synthesis. In
Joint European Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering (ESEC/FSE), pages 166–178, 2015.

33. Fan Long and Martin Rinard. Automatic Patch Generation by Learning Correct
Code. In Symposium on Principles of Programming Languages (POPL), pages
298–312, 2016.

34. Sergey Mechtaev, Manh-Dung Nguyen, Yannic Noller, Lars Grunske, and Abhik
Roychoudhury. Semantic program repair using a reference implementation. In
International Conference on Software Engineering (ICSE), pages 129–139, 2018.

35. Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. Directfix: Looking for
simple program repairs. In International Conference on Software Engineering
(ICSE), pages 448–458, 2015.

36. Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. Angelix: scalable mul-
tiline program patch synthesis via symbolic analysis. In International Conference
on Software Engineering (ICSE), pages 691–701, 2016.

37. Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chandra.
Semfix: program repair via semantic analysis. In International Conference on
Software Engineering (ICSE), pages 772–781, 2013.

38. Huu Hai Nguyen and Wei-Ngan Chin. Enhancing Program Verification with Lem-
mas. In International Conference on Computer Aided Verification (CAV), pages
355–369, 2008.

39. Thanh-Toan Nguyen, Quang-Trung Ta, and Wei-Ngan Chin. Automatic program
repair using formal verification and expression templates. In International Con-
ference on Verification, Model Checking, and Abstract Interpretation (VMCAI),
pages 70–91, 2019.

40. Nadia Polikarpova and Ilya Sergey. Structuring the synthesis of heap-manipulating
programs. In Symposium on Principles of Programming Languages (POPL), pages
72:1–72:30, 2019.

41. Yuhua Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and Chengsong Wang. The
strength of random search on automated program repair. In International Confer-
ence on Software Engineering (ICSE), pages 254–265, 2014.

42. Xiaokang Qiu and Armando Solar-Lezama. Natural synthesis of provably-correct
data-structure manipulations. In International Conference on Object Oriented Pro-
gramming Systems Languages & Applications (OOPSLA), pages 65:1–65:28, 2017.

43. Baishakhi Ray, Vincent Hellendoorn, Saheel Godhane, Zhaopeng Tu, Alberto Bac-
chelli, and Premkumar T. Devanbu. On the "naturalness" of buggy code. In
International Conference on Software Engineering (ICSE), pages 428–439, 2016.

44. John C. Reynolds. Separation logic: A logic for shared mutable data structures.
In Symposium on Logic in Computer Science (LICS), pages 55–74, 2002.

45. Georgios Sakkas, Madeline Endres, Benjamin Cosman, Westley Weimer, and Ran-
jit Jhala. Type error feedback via analytic program repair. In Conference on
Programming Language Design and Implementation (PLDI), pages 16–30, 2020.

23

46. Stelios Sidiroglou-Douskos, Eric Lahtinen, Fan Long, and Martin Rinard. Auto-
matic error elimination by horizontal code transfer across multiple applications. In
Conference on Programming Language Design and Implementation (PLDI), pages
43–54, 2015.

47. Quang-Trung Ta, Ton Chanh Le, Siau-Cheng Khoo, and Wei-Ngan Chin. Auto-
mated mutual explicit induction proof in separation logic. In International Sym-
posium on Formal Methods (FM), pages 659–676, 2016.

48. Quang-Trung Ta, Ton Chanh Le, Siau-Cheng Khoo, and Wei-Ngan Chin. Au-
tomated lemma synthesis in symbolic-heap separation logic. In Symposium on
Principles of Programming Languages (POPL), pages 9:1–9:29, 2018.

49. Rijnard van Tonder and Claire Le Goues. Static automated program repair for
heap properties. In International Conference on Software Engineering (ICSE),
pages 151–162, 2018.

50. Sahil Verma and Subhajit Roy. Synergistic debug-repair of heap manipulations.
In Joint European Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering (ESEC/FSE), pages 163–173, 2017.

51. Ke Wang, Rishabh Singh, and Zhendong Su. Search, align, and repair: data-driven
feedback generation for introductory programming exercises. In Conference on
Programming Language Design and Implementation (PLDI), pages 481–495, 2018.

52. Westley Weimer, Zachary P. Fry, and Stephanie Forrest. Leveraging program equiv-
alence for adaptive program repair: Models and first results. In International Con-
ference on Automated Software Engineering (ASE), pages 356–366, 2013.

53. Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. Auto-
matically finding patches using genetic programming. In International Conference
on Software Engineering (ICSE), pages 364–374, 2009.

54. Jifeng Xuan, Matias Martinez, Favio Demarco, Maxime Clement, Sebastian
R. Lamelas Marcote, Thomas Durieux, Daniel Le Berre, and Martin Monperrus.
Nopol: Automatic repair of conditional statement bugs in Java programs. IEEE
Transactions on Software Engineering (TSE), 43(1):34–55, 2017.

24

	Automated Repair of Heap-Manipulating Programs using Deductive Synthesis

