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Abstract. We present an application of SACO—a resource Static An-
alyzer for Concurrent Objects—to infer gas bounds on Ethereum smart
contracts written in Solidity. We identify a programming pattern in smart
contracts, supported by real-world case studies, that requires an accurate
estimate of consumed gas for the reasons of contract execution safety.
Those case studies pose a challenge for the cheap-and-cheerful approach
for estimating the amount of gas, implemented in the state-of-the-art
Solidity compiler. We then demonstrate how our translation of smart
contracts from Solidity into concurrent objects allows one to automati-
cally derive parametric gas bounds.

1 Introduction

Blockchain consensus, a family of distributed protocols for building a replicated
transaction log (a blockchain), is a technology that made possible the creation
of decentralised cryptocurrencies, such as Bitcoin [19]. In Ethereum [22], one of
Bitcoin’s most prominent successors, the blockchain has also been employed as
a medium for implementing user-defined replicated stateful computations asso-
ciated with funds-exchanging transactions—so-called smart contracts [4].

Smart contracts are small programs stored in a blockchain that can be in-
voked by certain transactions, initiated by the parties involved in the protocol,
executing some business-logic as automatic and trustworthy mediators. Typical
applications of smart contracts involve implementations of multi-party account-
ing, voting and arbitration mechanisms, auctions, and puzzle-solving games with
distribution of rewards. For the consistency of the blockchain, every transaction
must be validated by the majority of involved parties. In practice, it means
that every computation involving an interaction with a smart contract is repli-
cated across the system. Having contracts written in a general-purpose Turing-
complete language [1, 3] would mean that such replicated computations could
potentially diverge, leading to a denial-of-service of the nodes validating them,
unless a uniform strategy to handle such diverging executions is adopted.

In Ethereum, the mechanism for dealing with potentially non-terminating
smart contract executions is based on a notion of gas—a cost semantics of low-
level contract instructions. Therefore, when proposing a transaction interacting
with a contract, a node pays for the cost of its execution using Ether, the internal
currency of Ethereum. Thus, the amount of Ether to be converted to gas must be
determined statically, before the transaction is issued. If the allocated amount of
gas is insufficient, the transaction will be aborted, yet the Ether spent will still
be deduced from the account of the node that has proposed the transaction. In



any event, the gas-allocated funds will be set to reward the nodes participating
in validating, i.e., evaluating, the transaction.

Hence, estimating the gas cost of calling a contract is of crucial importance for
issuing a viable transaction in Ethereum. The challenge of computing a correct
gas bound becomes particularly acute in the presence of an interplay between
multiple distributed parties: for instance, it is not uncommon to call a contract
which then transfers a certain amount of funds to another party, who will later
use them to buy gas for running a callback in the same contract. Finally, it is
not always possible to provide a constant gas estimate: in the presence of con-
current interaction in a blockchain protocol, the cost of calling a contract might
vary dynamically, due to changes in the blockchain’s state. Standard compilers
for Solidity [1] and Viper [3], de-facto high-level smart contract languages in
Ethereum, fail to provide accurate parametric gas bounds.

In this work, we demonstrate how to use SACO [8]—a framework for static
resource analysis of concurrent objects written in the ABS language [17]—to ob-
tain parametric gas bounds for Ethereum contracts. We showcase our approach
in application to the callback-oriented implementation style, in which run-time
contract safety depends on a statically obtained gas cost of its execution. We also
report on using SACO for computing gas bounds for two real-world examples.

2 Inference of Gas Bounds for Smart Contracts

2.1 Encoding Smart Contracts as Concurrent Objects

Smart contracts behave as concurrent (or active) objects—a model for concur-
rency well studied by the formal methods community (see, e.g., the survey [13]
and its references). Like concurrent objects, smart contracts have an internal
mutable state and methods that execute atomically (without interrupts). A con-
tract can be accessed by multiple accounts or addresses, which may belong both
to users or to other contracts, and which run transactions on the contract. Trans-
actions are concurrent calls that execute a corresponding method of the contract.
These transactions can modify the contract state and execute as in the coopera-
tive concurrency model of concurrent objects. This implies that, although each
transaction relinquishes control of its execution and thus cannot be interrupted,
the order in which transactions are scheduled can lead to different outcomes.

Fig. 1 shows to the left an excerpt of the Solidity implementation of the
BlockKing contract, a simple gambling game [5], and to the right the encoding
using the concurrent objects language ABS [17]. Although BlockKing is not heav-
ily used, it shows the use of the Oraclize service [10]—a service which enables
contracts to communicate with the world outside the blockchain and for which
concurrency issues arise. The gamble in BlockKing is as follows: at any given
time there is a designated “Block King” (initially the owner of the contract). In
the Solidity code, we can observe that the contract state is formed by the data
declared in Lines 2-3 (L2-3 for short), where references to the owner and king
users are kept, among other contract fields. When a user wants to send money
to the contract, the default function executes L5 and invokes method enter L6.
Some implicit parameters, such as msg.send and msg.value, are stored in the
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1 contract BlockKing is usingOraclize{
2 address public owner, king, ...;
3 uint public warriorBlock, randomNum ...;
4 function BlockKing() {...}
5 function() {enter();}
6 function enter() {
7 if (msg.value < 50 finney) {
8 msg.sender.send(msg.value);
9 return;}

10 warrior = msg.sender;
11 warriorGold = msg.value;
12 warriorBlock = block.number;
13 bytes32 myid = oraclize query(...);}
14 function callback(bytes32 myid,...) {
15 ...
16 process payment(); }
17 function process payment() {
18 uint singleDigit = warriorBlock;
19 while (singleDigit > 1000000) {
20 singleDigit −= 1000000;}
21 while (singleDigit > 100000) {
22 singleDigit −= 100000; }
23 ...
24 if (singleDigit == 10) {
25 singleDigit = 0; }
26 ...}
27 king.send(reward);
28 owner.send(contractAddress.balance);
29 }
30 }

31 class BlockKing{
32 Address owner, king,..;
33 Int warriorBlock, randomNum..;
34 Oraclize o...;
35 Int balance=1000;
36 init(){...}
37 Unit enter(AddressI msg sender,
38 Int msg value, Int block number) {
39 if (msg value <50) {
40 msg sender!send(msg value);
41 } else{
42 warrior = msg sender;
43 warriorGold = msg value;
44 warriorBlock = block number;
45 o!query(this);} }
46 Unit callback() {
47 ...
48 process payment();}
49 Unit process payment() {
50 Int singleDigit = warriorBlock;
51 while (singleDigit > 1000000) {
52 [cost==c(D)]
53 singleDigit = singleDigit−1000000;}
54 while (singleDigit > 100000) {
55 singleDigit = singleDigit−100000;}
56 ...
57 if (singleDigit == 10) {
58 singleDigit = 0;
59 ...
60 king!send(reward);
61 owner!send(balance);}
62 }

Fig. 1. Excerpt of BlockKing Contract. Solidity implementation (left). Concurrent
objects implementation in ABS (right).

contract fields, as well as the transaction block number that is accessed in L12
and stored in the object state. Then, the Oraclize service is invoked in L13 to
obtain a random number between 1 and 9. This invocation raises an observable
event, handled by the Oraclize service provider, so it later makes a call to the
designated callback point (method callback). L19-24 in callback compute the
current block number modulo 10, and if this number is equal to the random
number provided by Oraclize, the sender becomes the new Block King, and the
sender gets a reward L27 and the owner gets the current balance L28.

An important point to note is that if multiple gamblers send transactions in
a short period of time, they may overwrite the previous gambler data, such that
when callbacks occur, the last gambler will enjoy multiple chances to win the
reward (see [20] for a more detailed explanation). The same interleavings are
captured by our ABS encoding showed to the right of the figure. The following
differences between the Solidity and ABS implementations are purely syntactic:

1. Contracts are concurrent objects: we use “class Name” (see L31) to define a
contract and create the contract using new Name().

2. Accounts are concurrent objects of class Address (L32) and the Oraclize ser-
vice is a concurrent object of class Oraclize that serves the queries (L34).

3. Method init makes default initalization (L36).
4. The implicit parameters msg of smart contracts, and the block number,

become explicit parameters of the entry method in the transactions (L37).
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5. The balance of the contract becomes an explicit field of the ABS class (L35).
6. We use asynchronous method calls, denoted o!m, to asynchronously invoke

method m on object o (L61).

Although we have not implemented a syntactic translation from Solidity contract
to equivalent ABS models yet, we believe it is possible, due to the straightforward
nature of the mappings described above. Such a translation would give a formal
semantics to Solidity contracts in terms of concurrent objects [21].

2.2 Gas Bounds Analysis

A main advantage of generating ABS models from smart contracts is that ex-
isting advanced dynamic and static tools to reason about qualitative and quan-
titative properties of ABS models [2] can now be applied to smart contracts. In
this section, we focus on the particular quantitative property of gas consumption
and show how to use an off-the-self resource analyzer for ABS [7,8].

User-defined cost model. SACO [8] is a static analysis tool for concurrent ob-
jects. It includes a generic resource analyzer which computes upper bounds for
the resource consumption (as a parametric function of the input data sizes) of
executing concurrent object systems. The analyzer is generic wrt. the type of
resource one wants to measure, aka the cost model. It already integrates cost
models to count number of executed steps, amount of memory allocated, etc.
In this work, we employ SACO’s support for user-defined cost models. A user-
defined cost model allows one to write annotations in the code of the form
[cost==c(D)]. For instance, the annotation in L52 represents the gas consump-
tion of executing the subtraction operation under the annotation. Given this an-
notation, SACO computes as upper bound c(D)*(warriorBlock-1)/1000000,
which corresponds to the number of iterations of the while loop multiplied by
the gas consumption of the subtraction. Therefore, for each type of instruction I,
we include a cost annotation [cost==c(I)] and the analyzer computes an up-
per bound over-approximating the number of instructions of each type executed
in the worst case multiplied by the actual gas consumed by I, denoted c(I).
Analyzing the callback method, we obtain the following upper bound:

c(D)∗((warriorBlock−1)/1000000+(warriorBlock−1)/100000)+c(S)∗2+c(A)+c(C)+...

Intuitively, it counts the gas consumed by the decrements the 2 loops executed
in callback, plus 2 send-operations (represented by c(S)) an assignment (c(A)),
a conditional (c(C)), plus the gas consumed by the code that we have omitted.

Smart contracts bounds. The above bound reveals two important features of gas
bounds of smart contracts, namely they may depend on:

– the contract state: The gas bound above is parametric on the warriorBlock.
Due to the interleaving of blockchain transactions, one gambler might over-
write the data of a previous gambler, the actual gas cost will be determined
by a value set by a different gambler than the one being charged for the gas.

– the state of the blockchain ( e.g., the current block number, etc.): This in-
deed happens in the running example too. The initialization value of the
warriorBlock corresponds to the block number of the last transaction that
sent money to the contract, which might not correspond to the block number
of the transaction that will be charged for the gas.
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Thus, inferring gas bounds is not only useful to accurately estimate the amount
of gas that must be put for successfully running the transaction [12], but it
may also reveal unexpected behaviours in the code that arise due to the concur-
rent execution of smart contracts [20], e.g., a gambler may be charged of a gas
consumption that depends on other gambler’s parameters or on the blockchain.

3 Validation of Results

As described in Section 2, our analysis works on a contract code written in ABS,
translated from Solidity sources. How do the obtained gas bounds relate to those
observed at run time on the blockchain? In this section, we validate our approach
empirically by comparing the upper bounds we obtain using our method with
the actual gas consumption of the callback methods of two contracts. In order
to obtain gas bounds for each instruction I in the Solidity code, we use the
Solidity compiler solc to obtain a corresponding sequence of EVM bytecode [1].
From this bytecode, compute a gas cost estimate for each instruction following
the gas cost specifications of Ethereum [22]. We then substitute this gas cost for
each c(I) in the formula produced by SACO.

BlockKing. The BlockKing contract implements a very inefficient “modulo 10”
operation on positive integers through the use of six consecutive while-loops.
To analyze it, we use only the näıve annotations described in Section 2.1. We
bound the variable blockID by the number of the last Ethereum block in which
BlockKing was called, which is 1,278,878. We obtain a bound of the order of
magnitude of 6, 300, 000 gas, which is unreasonably large. The reason for this is
that the size analysis in SACO does not work with modulo operations and is not
able to infer the amount by which the value of singleDigit has decreased at the
end of each loop. For example, when we get to Line 54 we do not employ the
information that singleDigit < 1, 000, 000 even though this is the case. This leads
to an overly pessimistic estimate. Explicitly annotating the modulo operations
computed by the loops, allows SACO to produce a bound of 102, 640. The actual
gas cost of the callback function execution is around 60, 000 gas.

EthereumPot. The EthereumPot contract [6] implements a simple lottery. Dur-
ing a game, players, represented by arbitrary Ethereum accounts, call a method
joinPot to buy (one or more) lottery tickets; each player’s address is appended
to a variable-length array addresses of current players, and the number of tickets
is appended to an array slots. After some time has elapsed, anyone can call a
rewardWinner method which calls the Oraclize service to obtain a random num-
ber for the winning ticket. If all goes according to plan, the Oraclize service then
responds by calling a callback method with this random number as an argu-
ment. A new instance of the game is then started, and the winner is allowed to
withdraw their balance using a withdraw method.

The callback function was called 12 times in the history of the EthereumPot
contract. The biggest gas consumption was 173, 870, which is significantly higher
than the other values: this can be explained by the fact that several variables
were initialized for the first time with the SSTORE instruction, with the high
cost of 20, 000 gas each. The smallest gas consumption was 88, 413 gas.
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Players 2 2 2 4 2 2 2 2 3 5 2 3
Gas 173870 105986 96295 107114 88413 95915 90639 90706 98107 101274 98554 88415

We obtain the upper bound 245, 935 + 650 · slots for the callback method
of the EthereumPot contract, where slots is the number of Ethereum addresses
who bought tickets. Since callback ends by a for loop over all slots to find the
winner, part of this cost is proportional to the number of players. Note that this
formula is simplified and neglects a few operations related to the checking of the
cryptographic proof supplied by Oraclize.

Discussion. Indeed, there are many ways to compile a given Solidity instruction
to EVM bytecode and thus there is no single way of assigning a gas cost to a
Solidity instruction: depending on the version of the compiler and on the level of
optimization, this may vary greatly. Furthermore, the gas cost of some opcodes
is context-dependent. For example, the opcode SSTORE for storing a value v in
a contract-level variable x costs 20, 000 gas to execute when v 6= 0 and x = 0.
However, when x 6= 0 and v = 0, which is the default value of any uninitialized
variable, storing v in x actually amounts to deleting x: since this deletion frees up
memory, it gives the caller a 15, 000 gas refund. Finally, in other cases updating
x to value v only costs 5, 000 gas. Thus, if the value of v cannot be obtained
statically, one can only give an upper bound of 20, 000 gas.

Because of this context dependency and due to the mismatch between the
estimated costs at the level of Solidity (via SACO) and at the level of EVM, our
approach will necessarily obtain upper bounds which are sometimes much higher
than the actual gas consumption. As we are reasoning at the level of Solidity
code, what we obtain cannot be considered as a rigorous upper bound on any
compilation of a program to EVM code, but rather as an order of magnitude of
an upper bound on what the standard solc compiler would produce.

4 Related Work and Conclusions

A number of formalizations of EVM and Solidity were implemented in Coq [16],
Isabelle/HOL [9], F? [11], K [15], and in custom tools for static and dynamic
analysis of smart contract behaviours [14, 18]. Of all those systems, the closest
to ours are Oyente [18] and KEVM [15]. Oyente performs automatic analysis of
contracts, yet, it does not derive the gas usage boundaries. The KEVM suite
provides a program verifier that is capable of deriving the gas complexity of the
program by implementing a simple gas-counting runtime monitor. Their analysis
summarizes the gas and memory used for each basic block of an EVM program,
that is, the derived boundaries are not given in terms of field sizes of a contract.

In this paper, we presented a proof-of-concept approach for using a state-of-
the-art resource analyzer to infer over-approximations of the gas consumption of
smart contracts on Ethereum blockchain. We have demonstrated our approach
on two case studies by encoding manually the Solidity programs into ABS and
using cost annotations to track the gas cost of ABS instructions. Our ABS
models can be accessed online from: http://costa.ls.fi.upm.es/saco/web,
in the folder SmartContracts.
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17. E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, and M. Steffen. ABS: A Core
Language for Abstract Behavioral Specification. In FMCO, volume 6957 of LNCS,
pages 142–164. Springer, 2012.

18. L. Luu, D. Chu, H. Olickel, P. Saxena, and A. Hobor. Making smart contracts
smarter. In CCS, pages 254–269. ACM, 2016.

19. S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.
20. I. Sergey and A. Hobor. A Concurrent Perspective on Smart Contracts. In 1st

Workshop on Trusted Smart Contracts, volume 10323 of LNCS, pages 478–493.
Springer, 2017.

21. I. Sergey, A. Kumar, and A. Hobor. Scilla: a Smart Contract Intermediate-Level
LAnguage. CoRR, abs/1801.00687, 2018.

22. G. Wood. Ethereum: A secure decentralised generalised transaction ledger. Avail-
able at http://gavwood.com/paper.pdf, 2014.

7

https://solidity.readthedocs.io/en/develop
http://abs-models.org
https://viper.readthedocs.io/en/latest
Available at https://etherscan.io/address/0x3ad14db4e5a658d8d20f8836deabe9d5286f79e1
Available at https://etherscan.io/address/0x3ad14db4e5a658d8d20f8836deabe9d5286f79e1
https://etherscan.io/address/0x5a13caa82851342e14cd2ad0257707cddb8a31b7
https://etherscan.io/address/0x5a13caa82851342e14cd2ad0257707cddb8a31b7
http://www.oraclize.it
http://gavwood.com/paper.pdf

	Towards Automatic Inference of Gas Bounds for Smart Contracts on the Ethereum Blockchain-10pt

